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Abstract Wood basic density is among the selection
criteria for many fast-grown tree species, including
Pinus radiata D. Don in New Zealand. Basic density
was assessed in 23,330 stem cores from 18 trials to
study the heritability, the relevance of environmental
effects and the magnitude of genotype-by-environment
(GxE) interaction. Site differences in annual average
temperature dominated variability in this dataset, with
lower latitude and altitude (i.e. warmer) sites displaying
higher average density. Between highest- and lowest-
density sites there was an 18% difference (302.7 vs.
358.4 kg m−3) for the linear mean for cores of rings 1–5
and a 39% difference (329.7 vs. 459.1 kg m−3) for the
linear mean of rings 6–10. The estimated heritabilities
fluctuated between 0.28 and 0.94 (mean, 0.6); how-
ever, basic density displayed little within-site variability
(phenotypic coefficient of variation, <8%). Bivariate
analyses were used to estimate between-site genetic
correlations as an indication of GxE interaction. Only
57 out of the 153 pairs of trials contained enough
information to estimate the between-site genetic cor-
relations and, out of those, 15 estimates were not
statistically significant. Moderate to high (0.46–0.96)
significant genetic correlation estimates indicated that
there was little interaction for basic density, suggesting
no need to modify the breeding strategy to account for
differential performance in this trait. Poor connected-
ness between trials could be depressing estimates of
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genetic correlations. This situation should be consid-
ered when designing genetic testing schemes, particu-
larly when purposely inducing imbalance as in rolling
front strategies.
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Introduction

Predicting the genetic worth of individuals is crucial
to tree breeding programs, and it is often based upon
data from multiple genetic trials. Forest plantations are
deployed in extensive, heterogeneous environments,
and the spatial allocation of genetic trials aims to reflect
this situation.

Environmental differences affect both the quantity
and quality of wood produced. In terms of quantity,
potential site productivity is commonly expressed using
indices of tree height (e.g. site index) or volume (e.g.
300 index, Kimberley et al. 2005) at a standard age. The
environmental effects on wood properties are some-
times mapped as ‘quality regions’; as an example, Cown
(1992, page 8) divided New Zealand in to three basic
density regions: high, medium and low. It is expected
that the average quantity and quality of wood will rise
or fall depending on the productivity index or quality
region where the trees are growing.

Nevertheless, one of the main questions during
genetic testing is ‘Will superior genotypes perform
satisfactorily across heterogeneous environments?’.
The varying effect of environmental conditions on
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the performance of different genotypes is termed
genotype-by-environment (GxE) interaction. GxE
interaction can be partitioned into effects due to het-
erogeneity of variances and to lack of correlation
(Muir et al. 1992). Heterogeneous variances—related
to changes of scale like site index—are not necessarily
a problem. However, changes of ranking depending on
testing environment may lead to more complex breed-
ing and/or deployment strategies that require multiple
breeding objectives (Howarth et al. 1997; Goddard
1998).

There are two naïve extremes when dealing with
GxE interaction: assuming that either there is complete
lack of interaction or that the interaction is impor-
tant for every trait, site and genotype. Most breeding
programs will fall between these extremes. In general
terms, GxE interaction appears to be relatively impor-
tant in part of the forest estate for growth traits (e.g.
stem diameter, height and volume see Johnson and
Burdon 1990; Carson 1991; Matheson and Wu 2005),
but presents a small magnitude for wood properties
(e.g. Kumar 2004; Gapare et al. 2009). Unfortunately,
most studies for wood traits rely on a small number
of both sites and genotypes or on indirect—and less
accurate—assessments, like penetrometer readings to
estimate basic density.

Pinus radiata D. Don is the most important tem-
perate plantation species in the Southern hemisphere,
covering over 3.7 million ha, mostly in New Zealand,
Chile and Australia. The New Zealand radiata pine
breeding program started in the 1950s initially focusing
on growth, form and health traits—as did many tree
breeding strategies around the world. The selection
criteria were later extended to encompass traits that
relate to the quantity and quality of wood produced
(Jayawickrama and Carson 2000; Dungey et al. 2007).
One such trait is wood basic density. While for solid
wood production basic density should no longer be
considered the paramount structural and appearance
timber property (Apiolaza 2009) it is still an important
trait, particularly for fiber and energy production as
well as for ‘carbon forestry’.

A thorough genetic testing system requires high
connectedness (pedigree relationships) among trials,
leading to a more precise estimate of genetic correla-
tion, a more accurate comparison of estimated breeding
values between trials and higher accuracy of selec-
tion (Kennedy and Trus 1993). Unfortunately, poor
connectedness is not unusual in tree breeding, where
often there are few parents in common among trials,
even when tracing back the pedigree. This may be
due to technical problems (propagation difficulties,
differential site mortality, etc), limited resources, or

simply oversight. In spite of connectedness issues, trials
are frequently incorporated in genetic evaluations that
attempt to compare genetic material among trials (e.g.
Baltunis et al. 2009, for stem diameter). The implicit
assumption is that GxE interaction is negligible; how-
ever, there is evidence to suggest that this interaction
can be significant for stem diameter in New Zealand
(e.g. Johnson and Burdon 1990; McDonald 2009).

In this research, the combined analysis of stem core
data for basic density from over 23,000 trees distributed
in 18 trials is presented. Then the variation of addi-
tive genetic control, the relevance of environmental
effects and the magnitude of the interaction between
genotypes and environment are reviewed. Finally, the
role poor connectedness plays in our understanding of
genetic parameters is discussed.

Materials and methods

This study considered 17 progeny trials across the New
Zealand forest estate and one trial (D) in New South
Wales (Australia), including a range of mating designs
and field designs, as well as of environmental conditions
(Table 1) and ages of assessment. Until recently, the
New Zealand breeding program focused most testing
in the Central North Island; only one of the trials (B)
in Table 1 is located in the South Island, as shown in
Fig. 1.

Basic density—oven-dry weight divided by green
volume expressed in kg m−3—was calculated for 5-mm
diameter stem cores at breast height (1.3 m). A total
of 23,330 trees were assessed, ranging from 246 trees
in trial B to 3,000 trees in trials P and Q. There are
768 parents in the dataset (695 with progeny data),
most of them representing the New Zealand land race,
with the exception of parents in trial J, which con-
tains Guadalupe Island hybrids. The stem cores include
different numbers of rings (see Table 2), with more than
half of the trials including rings 6–10, although there are
cores covering rings 1–5, 1–7 and 1–8.

The genetic analyses considered two stages:
First, univariate analyses were run considering all

genetic (additive and, when appropriate, dominance
effects) and experimental design features (replicates,
sets and plots). All effects, except for the overall mean,
were considered as random.

For most trials the only significant (p < 0.05) ran-
dom effect was additive genetic. Furthermore, dropping
additional significant effects (in trials that presented
them) changed heritability estimates by less than 2%.
Therefore, univariate analyses were simplified from
a general model including a fixed overall mean, and
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Table 1 Establishment year, location (Latitude South and Longitude East), and environmental data from NIWA for the trials

Trial Year Latitude Longitude Altitude Temperature Rainfall
A 1987 36◦21′49′′ 174◦07′39′′ 100 14.5 1,202
B 1990 45◦59′38′′ 170◦11′43′′ 27 10.6 759
C 1993 39◦13′56′′ 176◦51′51′′ 451 11.1 1,553
D 1993 33◦28′42′′ 149◦01′31′′ 800 12.4 842
E 1995 38◦16′52′′ 176◦43′30′′ 332 12.9 1,762
F 1995 38◦08′31′′ 176◦34′14′′ 117 12.9 2,161
G 1988 36◦21′39′′ 174◦06′15′′ 81 15.0 1,283
H 1988 38◦16′25′′ 175◦52′09′′ 372 12.2 1,689
I 1988 37◦53′17′′ 176◦23′18′′ 98 13.8 1,839
J 2000 38◦09′07′′ 176◦36′41′′ 85 13.3 2,111
K 1989 36◦21′39′′ 174◦06′15′′ 81 15.6 1,259
L 1981 37◦58′35′′ 176◦32′22′′ 280 13.4 2,156
M 1985 38◦13′39′′ 176◦08′01′′ 678 10.7 1,561
N 1985 38◦14′20′′ 175◦59′40′′ 495 11.2 1,564
O 1987 38◦37′30′′ 176◦20′40′′ 565 10.9 1,358
P 1968 38◦16′27′′ 176◦41′15′′ 415 12.7 1,724
Q 1968 38◦16′27′′ 176◦41′15′′ 415 12.5 1,634
R 1969 38◦45′54′′ 176◦15′43′′ 700 10.6 1,720

Variables derived from GIS layers correspond to altitude (masl), temperature (annual average, ◦C), and rainfall (annual, mm)

random replicate, plot and additive effects to the fol-
lowing model:

y = Xb + Z a + e (1)

where y is the vector of phenotypic observations for
a single site, b the vector of the fixed effect (overall
mean), a the vector of additive genetic effects and e
is the vector of residuals. X and Z are incidence ma-

trices linking the phenotypes to the overall mean and
additive genetic values vectors, respectively. The ex-
pected value and variances were E[y] = Xb , Var[a] =
G = σ 2

a A and Var[e] = R = σ 2
e I for A the numerator

relationship matrix and I an identity matrix. The resid-
uals were assumed to be identically and independently
normally distributed.

In a second stage, all pairs of trials were run as bi-
variate analyses, fitting only overall mean and additive
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Fig. 1 Locations of trials in New Zealand, where letters correspond to trial codes in Table 1. Notice the poor coverage in the South
Island (only trial B) and the absence of trial D located in Australia
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Table 2 Descriptive statistics for phenotypic wood basic density,
including range of rings sampled (rings), number of extracted
cores (cores), mean trial density (mean, kg m−3), standard de-
viation (SD) and coefficient of variation (CV, %)

Trial Rings Cores Mean SD CV
A 6–10 1129 459.1 34.2 7.5
B 6–10 246 363.5 26.9 7.4
C 1–5 1524 343.0 20.5 6.0
D 1–8 2562 352.8 20.8 5.9
E 1–7 590 345.4 22.1 6.4
F 1–7 656 351.7 18.5 5.3
G 6–10 1054 448.4 35.0 7.8
H 6–10 642 329.7 21.2 6.4
I 1–10 288 344.3 24.4 7.1
J 1–5 2032 358.4 25.7 7.2
K 6–10 639 429.3 35.0 8.1
L 6–10 885 383.9 27.4 7.1
M 6–10 1745 365.6 27.8 7.6
N 6–10 1282 379.9 28.2 7.4
O 6–10 1631 356.9 24.2 6.8
P 1–5 3000 302.7 19.0 6.3
Q 6–10 425 375.9 29.9 8.0
R 1–5 3000 311.1 18.9 6.1

genetic effects. Equation 1 was expanded to accom-
modate two traits (stacking up the vectors), in such a
way that b , a and e now contain the values for both
trials. The variances were then Var[a] = G = G0 ⊗
A and Var[e] = R = R0 ⊗ I, where ⊗ represents the
Kronecker matrix product and:

G0 =
[

σ 2
a1

σa12

σa12 σ 2
a2

]
R0 =

[
σ 2

e1
σe12

σe12 σ 2
e2

]
(2)

Heritabilities (h2) and genetic correlations (r12) were
estimated using the standard formulas:

ĥ2 = σ̂ 2
a

σ̂ 2
a + σ̂ 2

e
r12 = σ̂a12√

σ̂ 2
a1

σ̂ 2
a2

All analyses were performed using asreml-r, which
is an implementation of ASReml (Gilmour et al. 2002)
for the R statistical software system (R Development
Core Team 2008). An R script fitted all 18 single-site
univariate analyses, as well as the 18 (18 − 1)/2 = 153
bivariate analyses for all pairs of trials. The statistical
significance of all covariance components was tested
using a likelihood ratio test, while standard errors for
heritabilities and genetic correlations were approxi-
mated using a Taylor series (Gilmour et al. 2002).

GPS trial coordinates were matched to New
Zealand’s National Institute of Water & Atmospheric
Research climate data GIS layers, to link genetic per-
formance and parameters with climatic descriptors.
Climate data for trial D (in Australia) was obtained
from ANUCLIM (Houlder et al. 2001).

Finally, the relationship between mean basic density
and environmental factors was modeled using multiple
linear regression. The mean basic density for each
trial presented in Table 2 was treated as the response
variable, while centered (i.e. expressed as deviation
from the mean) temperature and rainfall from Table
1 were used as predictors. Centered regressions are
easier to interpret, as the main effects and the intercept
are interpreted based on deviations from the mean of
the data (Gelman and Hill 2007, page 55). A dummy
variable—coding for rings 1–5 and 6–10—was used to
test for differences of intercept and slope between ring
groups. The regression model was fitted using R.

Results

Table 2 provides phenotypic descriptive statistics for
the trials. Basic density ranged from 302.7 kg m−3

in trial P to 459.1 kg m−3 in trial A. However, the
difference was accentuated by including different sets
of rings in the samples, as basic density increases from
pith to bark. A simple way to consider ring differences
is to take the average of the ring numbers included in
the sample and then compare trials with similar ring
average. For example, a sample including rings 1–5 has
an average of three while a sample including rings 6–10
has an average of eight. Note that these are linear aver-
ages derived from increment cores, not the true cross-
sectional area-weighted averages; i.e. the averages are
biased toward lower values.

When considering the ten trials with average ring
8, basic density ranged from 329.7 to 459.1 kg m−3

(a range of 129.4 kg m−3). In trials with average ring
3–4 the range was smaller from 302.7 to 358.4 kg m−3

(a difference of 55.7 kg m−3). Phenotypic variability was
also related to ring average (or age), with the coefficient
of variation ranging between 5.3% and 7.2% for trials
with average ring 3–4 while ranging between 6.4% and
8.1% for older samples.

Genetic parameter estimates and connectedness be-
tween trials are summarized in Table 3. In the lower
triangle, the table displays the number of common
parents across pairs of trials, considering both female
and male parents, as well as controls. Any pair with
less than five parents in common was either linked only
by controls or only through the pedigree more than
one generation ago (i.e. by grandparents). An example
of the latter is the relationship between trials P, Q
and R (which correspond to the so-called 268 series)
and trial L (which contains parents that are progeny
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Table 3 Summary of connectedness and estimates of genetic parameters for the prediction of breeding values for basic density

Trials Parents Rings A B C D E F G H I J K L M N O P Q R
A 64 6–10 0.45 – – – – – – – – – – – – – 0.70 – – –

(0.10) (0.11)
B 21 6–10 0 0.28 – – – – – – – – – – – – 0.82 – – –

(0.13) (0.64)
C 194 1–5 0 0 0.69 0.96 – – – – – 0.46 – 0.87 0.79 0.74 – 0.99 – –

(0.07) (0.03) (0.20) (0.24) (0.26) (0.21) (0.10)
D 170 1–8 0 0 170 0.64 – – – – – 0.82 – 0.01 0.98 0.91 – 0.97 0.96 –

(0.06) (0.12) (0.46) (0.10) (0.14) (0.09) (0.11)
E 47 1–7 0 0 12 9 0.58 0.95 – – – 0.99 – −0.16 0.86 0.93 – 0.51 – 0.74

(0.13) (0.05) (0.11) (0.47) (0.17) (0.43) (0.38) (0.25)
F 43 1–7 0 0 11 8 43 0.47 – – – – – 0.66 0.53 – – 0.46 – 0.57

(0.12) 0.43 (0.29) (0.42) (0.34)
G 56 6–10 0 0 0 0 0 0 0.42 0.68 0.73 – – – – – – – – –

(0.11) (0.16) (0.20)
H 57 6–10 0 0 0 0 0 0 38 0.71 0.91 – – – – – – – – –

(0.16) (0.13)
I 26 1–10 0 0 0 0 0 0 20 25 0.91 – – – – – – – – –

(0.27)
J 88 1–5 0 0 28 21 5 4 0 0 0 0.94 – 0.55 – 0.81 – 0.55 0.87 0.46

(0.09) (0.50) (0.25) (0.23) (0.17) (0.25)
K 33 6–10 0 0 0 0 0 0 0 0 0 0 0.30 – – – – – – –

(0.12)
L 54 6–10 0 0 13 9 8 6 0 0 0 2 0 0.41 0.68 0.38 – 0.02 0.82 −0.03

0.12 (0.48) (0.53) (0.50) (0.48) (0.45)
M 152 6–10 0 0 27 23 29 27 0 0 0 12 0 0 0.47 – – 0.67 0.89 0.66

(0.08) (0.14) (0.15) (0.13)
N 148 6–10 0 0 27 23 29 27 0 0 0 12 0 0 145 0.48 – 0.81 0.69 0.74

(0.08) (0.34) (0.21) (0.35)
O 85 6–10 63 4 0 0 0 0 0 0 0 0 0 0 0 0 0.60 – – –

(0.11)
P 122 1–5 0 0 20 18 13 11 0 0 0 9 0 0 49 49 0 0.69 0.71 0.94

(0.09) (0.13) (0.03)
Q 51 6–10 0 0 23 20 11 10 0 0 0 9 0 0 37 38 0 42 0.81 0.65

(0.20) (0.14)
R 121 1–5 0 0 20 18 13 11 0 0 0 9 0 0 49 49 0 120 42 0.86

(0.10)

Number of parents in each trial (Parents), number of common parents across trials (below diagonal), heritability (and its standard error) in the bold diagonal, and genetic correlations
between sites (and their standard errors) above diagonal. Correlations in italics are non-significant (p > 0.05)
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of the 268 series). Most pairs of trials show low levels
of connectedness, which will influence the ability to
estimate GxE interaction across the breeding program.

The diagonal of Table 3 shows in boldface estimates
of individual-site heritabilities (and their standard er-
rors), which ranged from 0.28 (0.13) to 0.94 (0.09), with
most values falling between moderate and high. The
additive variances (and heritabilities) were significantly
different from zero for all trials.

All possible pairs of sites were then analyzed as
bivariate tree models, where density in each site was
considered as a different trait. Out of the 153 pairs of
trials, only 47 pairs contained enough information to
estimate the genetic correlation between them. These
correlation estimates (and their standard errors) are
displayed in the upper triangle of Table 3. Out of those,
15 estimates for the correlation between traits were not
statistically significant.

Some of the between-site genetic correlations in-
clude an element of age–age correlation, because they
cover different sets of rings (e.g. 1–5 and 6–10). How-
ever, the age–age correlations between these sets are
expected to be high (see, for example, Apiolaza and
Garrick 2001; Bouffier et al. 2008).
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As expected, Fig. 2 shows a positive association
between number of parents in common across trials
and the magnitude of the standard error of the esti-
mated correlation. In addition, the estimated genetic
correlation tends to drop when fewer parents can
be used.

Figure 3 displays the relationship between the av-
erage basic density for a trial and its average annual
temperature. There is an increase of basic density for
warmer sites; however, there is also a large difference
between average rings. That is, samples closer to the
pith (triangles) have lower average densities than sam-
ples farther away from the pith (circles). There are two
trials that show much lower values than expected: H
and P, for which it is still needed to find a satisfactory
explanation.

The coefficients for the regression lines (and their
standard errors) were 387.60 (7.46) for the inter-
cept, 18.36 (4.19) for the slope of temperature and
−48.01 (11.22) for the low ring class effect. All these
coefficients were statistically significant (p < 0.01),
with the regression lines for different ring classes show-
ing a different intercept (387.60 − 48.01 = 339.59) but
sharing a common slope. This model explained 75% of
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the observed variability. Adding annual rainfall did not
significantly improve model fit.

Discussion

Variability and genetic control

The high degree of additive genetic control (average
ĥ2 = 0.6) in these trials supports previous results ob-
tained by Nicholls et al. (1980), Kumar (2004) and
Wielinga et al. (2009). In contrast, other researchers
have reported lower values of heritability for this
species (Zamudio et al. 2002; Li and Wu 2005; Dungey
et al. 2006). It is not possible with this data set to disen-
tangle the sources of variability for the estimated her-
itabilities. The trials represent different environments,
genetic backgrounds, sample sizes, ages of assessment
and overall quality of site preparation. There was a
clear reduction of the standard error of the heritability
estimates with sample size (see Table 3), with values
stabilizing beyond 1,700 samples per trial. There was no
trend between number of samples and the magnitude of
estimated heritabilities.

It is easy to see how a readily assessable and highly
heritable trait like basic density became the most com-
monly studied wood trait in breeding programs. It is
important to remember, however, that with coefficients
of phenotypic variation close to 8% the within-site
variability is very small. The narrow genetic variability
is dwarfed by environmental differences due to site fac-
tors (e.g. mean annual temperature), presenting one of
the largest limitations to the operational improvement
of basic density. On the other hand, from a purely
deployment perspective, forest companies will make
their biggest gains from careful site selection.

Estimation of GxE interaction

In forestry, the use of ANOVA with a site × Ge-
netics (usually family or clones) interaction term was
traditionally the most commonly used method (e.g.
Burdon 1977). The main issues of this approach are
that it assumes homogeneous additive variance and
identical correlation between all pairs of trials (thus the
covariance matrix follows compound symmetry), and it
is difficult to frame when using animal model BLUP,
although it is relatively simple when using a sire model.

Nevertheless, there are numerous alternative
methodologies to study GxE interaction; for example,
Freeman (1973), Westcott (1986) and Cooper and
DeLacy (1994) presented broad, although by no
means exhaustive, reviews. Treating each site as a

different trait was suggested by Falconer in 1952 and
many recent approaches use multivariate evaluation,
assuming that performance in one site is a different,
although related, trait to performance in a second
site. Fitting this model becomes more difficult with
increasing number of sites due to overparameterization
and connectedness issues. While there is not much one
can do about the latter (except to run pairs of bivariate
analyses) the former can be tackled through the use
of a factor analytic structure (e.g., Costa e Silva et al.
2006).

Shelbourne (1972) proposed an approximate thresh-
old of 0.7 for genetic correlation to evaluate the prac-
tical importance of GxE interaction (when the GxE
variance is half the size of the additive variance using
an ANOVA approach). Only three of the significant
correlations are below that threshold (0.46, 0.65 and
0.68), which suggests that GxE interaction for basic
density should not be a major issue in the New Zealand
breeding program. Furthermore, the reported genetic
correlations (and their corresponding changes of rank-
ing) are an average for the breeding population. Focus-
ing on the deployment population, with material that on
average present better performance, could reduce the
importance of GxE interaction for basic density even
more.

Connectedness

This paper highlights the problems created by poor con-
nectedness among trials. In general, any pair of trials
with less than 20 parents in common (either directly or
via previous generations in the pedigree) had conver-
gence problems in obtaining estimates of genetic corre-
lation. This should be a concern for breeders designing
breeding programs, particularly when inducing lower
degrees of connectedness as a side-effect of rolling front
strategies (see, for example, Borralho and Dutkowski
1998). This result would be further exacerbated by
using small trials (e.g. Li et al. 2007).

Simulation work has suggested that as few as four
to six families in common would be enough to con-
nect trials for analyses (Johnson 2004). However, this
ignores both the biases and large standard errors sur-
rounding the estimation of genetic correlations with
too small a sample size (Apiolaza et al. 1999). This
problem becomes even more acute when dealing with
low-heritability traits (e.g. growth traits).

In addition, the process to generate the composition
of paired trials is not necessarily random, with some
parents represented in much higher proportions (due
to seed availability, survival, unbalanced mating de-
signs, etc.) than others. While in theory BLUP takes
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into account selection information to produce unbiased
predictions, this assumes known genetic parameters
(Henderson 1975). In contrast, tree breeding programs
are using these trials to estimate covariance compo-
nents, which are in turn used to estimate the magnitude
of GxE interaction.

Figure 2 presented a relationship between the es-
timated genetic correlations and the number of par-
ents in common, where poorly connected trials could
underestimate the correlation. In a simulation study
Sae-Lim et al. (2010) reported that small sample sizes,
exacerbated by particular population structures, were
more prone to produce downwardly biased estimates of
between-site genetic correlations. In addition, the trials
come from different selection series (there are first-,
second-generation and Guadalupe hybrids), which
would make possible that part of that bias comes from
selection effects. If this trend is correct, this would
suggest that GxE interaction for basic density could be
completely ignored in the New Zealand radiata pine
breeding program, as the lowest correlations would
be due in part to poor connectedness. To address the
estimation problem, testing and sampling procedures
will have to be modified, increasing the number of
related genetic material in common across trials. The
over-reliance on control seedlots of unknown or un-
clear genetic composition—often problematic in trial
analyses—to connect trials is another problem that
must be addressed in a breeding program.

Environmental drivers

Cown et al. (1991, page 19) presented clear latitudi-
nal trends for wood basic density in New Zealand,
with decreasing average from North to South while
Fig. 3 combines latitudinal and altitudinal effects by
using temperature. The results from the New Zealand
radiata pine breeding program progeny trials support
the trends suggested by Harris (1965) and Cown et al.
(1991), with some differences explained by the different
numbers of rings sampled in each study.

Still one needs to be cautious before claiming the
presence of a simple story for environmental drivers.
There seems to be a positive association between num-
ber of parents in common and genetic correlation; that
is, poor correlation (and therefore claims of high inter-
action) could derive from poor testing practices.

Warmer sites tended to have higher average density.
There is still within-trial genetic variability, although
lower than 8%, which means that low-density sites
could still benefit from using improved material.

Using trial coordinates it was possible to obtain
estimates for altitude, temperature, rainfall, wind and

radiation. In principle, it would be possible to look for
environmental variables that would separate groups of
trials with high within-group and low between-group
genetic correlations. Nevertheless, the poor connected-
ness between trials meant that:

1. The estimated correlations involved different sets
of parents, and

2. The highly variable number of parents in com-
mon between trials (previously discussed) made
any conclusions difficult to sustain.

Conclusions

– The degree of genetic control for radiata pine wood
density in New Zealand ranges between moderate
and high values (mean ĥ2 = 0.60). However, the
coefficient of variation for this trait is low (less than
8%), limiting the opportunities for increasing basic
density.

– Treating the expression in each site as a different
trait permitted us to explore the presence of struc-
ture in the genetic correlation matrix. However,
the gaps in connectedness did not permit fitting
more meaningful correlation structures (e.g. factor
analytic).

– There was little genotype-by-environment inter-
action for basic density for radiata pine in New
Zealand. Therefore, there would be no need to
modify the breeding strategy to account for GxE
for this one trait.

– Poor connectedness between trials could be de-
pressing the estimates of genetic correlations. This
situation should be considered when designing ge-
netic testing schemes, particularly when inducing
imbalance as in rolling front strategies.

– Site differences marked by annual average temper-
ature dominate variability in this dataset. Lower
latitude and altitude—that is warmer—sites dis-
play higher average basic density. This situation is
clearer once age effects of the cores is taken into
account.

Acknowledgments Data and funding for this project were pro-
vided by the New Zealand Radiata Pine Breeding Company
(NZRPBC). Many thanks to Paul Jefferson (RPBC) for compil-
ing the phenotypic dataset, Carolyn Raymond (Southern Cross
University) for the environmental data for trial D and John C.F.
Walker (University of Canterbury) for comments on the man-
uscript. Rowland Burdon, Tony Shelbourne and two anonymous
referees contributed helpful comments that improved this article.



Tree Genetics & Genomes

References

Apiolaza LA (2009) Very early selection for solid wood quality:
screening for early winners. Ann For Sci 66:601

Apiolaza LA, Garrick DJ (2001) Analysis of longitudinal data
from progeny tests: some multivariate approaches. For Sci
47:129–140

Apiolaza LA, Burdon RD, Garrick DJ (1999) Effect of univariate
subsampling on the efficiency of bivariate parameter estima-
tion and selection using half-sib progeny tests. For Genet
6:79–87

Baltunis BS, Wu HX, Dungey HS, Mullin TJ, Brawner JT (2009)
Comparisons of genetic parameters and clonal value predic-
tions from clonal trials and seedling base population trials of
radiata pine. Tree Genet Genomes 5:269–278

Borralho NMG, Dutkowski GW (1998) Comparison of rolling
front and discrete generation breeding strategies for trees.
Can J For Res 28:987–993

Bouffier L, Charlot C, Raffin A, Rozenberg P, Kremer A (2008)
Can wood density be efficiently selected at early stage in
maritime pine (Pinus pinaster Ait.)? Ann For Sci 65:106p1–
106p8

Burdon RD (1977) Genetic correlation as a concept for studying
genotype-environment interaction in forest tree breeding.
Silvae Genet 26:168–175

Carson SD (1991) Genotype x environment interaction and opti-
mal number of progeny test sites for improving Pinus radiata
in New Zealand. New Zealand J For Sci 21:32–49

Cooper M, DeLacy IH (1994) Relationships among analytical
methods used to study genotypic variation and genotype-
by-environment interaction in plant breeding multi-
environment experiments. Theor Appl Genet 88:561–572

Costa e Silva J, Potts BM, Dutkowski GW (2006) Genotype by
environment interaction for growth of Eucalyptus globulus
in Australia. Tree Genet Genomes 2:61–75

Cown DJ (1992) New Zealand radiata pine and Douglas
fir—suitability for processing. FRI Bulletin 168, Forest
Research Institute, 74 p

Cown DJ, McConchie DL, Young GD (1991) Radiata pine wood
properties survey. FRI Bulletin 50, New Zealand Forest
Research Institute, 50 p

Dungey HS, Matheson AC, Kain D, Evans R (2006) Genetics of
wood stiffness and its component traits in Pinus radiata. Can
J For Res 36:1165–1178

Dungey HS, Brawner JT, Burger F, Carson M, Henson M,
Jefferson P, Matheson AC (2007) A new breeding strategy
for Pinus radiata in New Zealand and New South Wales.
Silvae Genet 58:28–38

Falconer DS (1952) The problem of environment and selection.
Amer Nat 86:293–298

Freeman GH (1973) Statistical methods for the analysis of
genotype–environment interactions. Heredity 31:339–354

Gapare WJ, Ivkovich M, Baltunis BS, Matheson AC, Wu HX
(2009) Genetic stability of wood density and diameter in
Pinus radiata D. Don plantation estate across Australia.
Tree Genet Genomes 6:113–125

Gelman A, Hill J (2007) Data analysis using regression and
multilevel/hierarchical models. Cambridge University Press,
New York, 625 pp

Gilmour AR, Cullis BR, Welham SJ, Thompson R (2002)
ASReml reference manual. New South Wales Agriculture,
Orange, NSW, Australia

Goddard ME (1998) Consensus and debate in the definition of
breeding objectives. J Dairy Sci 81(2):6–18

Harris JM (1965) A survey of the wood density, tracheid length,
and latewood characteristics of radiata pine grown in New
Zealand. FRI Technical Paper 57, New Zealand Forest
Service, 31 pp

Henderson CR (1975) Best linear unbiased estimation and pre-
diction under a selection model. Biometrics 31:423–447

Houlder D, Hutchinson M, Nix H, McMahon J (2001) ANU-
CLIM 5.1 users guide. Centre for Resource and Envi-
ronmental Studies, The Australian National University.
Canberra, Australia, 85 pp

Howarth JM, Goddard ME, Kinghorn BP (1997) Breeding strate-
gies for targeting different breeding objectives. In: Proceed-
ings 12th conference, Association for the Advancement of
Animal Breeding and Genetics. Part One, Dubbo, NSW,
Australia

Jayawickrama KJS, Carson MJ (2000) A breeding strategy for
the New Zealand Radiata Pine Breeding Cooperative. Silvae
Genet 49:82–90

Johnson GR (2004) Common families across test series—how
many do we need? For Genet 11:103–112

Johnson GR, Burdon RD (1990) Family-site interaction in Pinus
radiata: implications for progeny testing strategy and region-
alised breeding in New Zealand. Silvae Genet 39:55–62

Kennedy BW, Trus D (1993) Considerations on genetic connect-
edness between management units under an animal model.
J Anim Sci 71:2341–2352

Kimberley MO, West GG, Dean MG, Knowles LR (2005) The
300 Index—a volume productivity index for radiata pine.
New Zealand J For 50:13–18

Kumar S (2004) Genetic parameter estimates for wood stiffness,
strength, internal checking, and resin bleeding for radiata
pine. Can J For Res 34:2601–2610

Li L, Wu HX (2005) Efficiency of early selection for rotation-
aged growth and wood density traits in Pinus radiata. Can J
For Res 35:2019–2029

Li Y, Dutkowski GW, Apiolaza LA, Pilbeam DJ, Costa e Silva
J, Potts BM (2007 The genetic architecture of a Eucalyptus
globulus full-sib breeding population in Australia. For Genet
12:167–179

Matheson AC, Wu HX (2005) Genotype by environment in-
teractions in an Australia-wide radiata pine diallel mating
experiment: implications for regionalized breeding. For Sci
51:29–40

McDonald TM (2009) Making sense of genotype × environment
interaction of Pinus radiata in New Zealand. Ph.D. thesis,
School of Forestry, University of Canterbury, Christchurch,
New Zealand

Muir W, Nyquist WE, Xu S (1992) Alternative partitioning of the
genotype-by-environment interaction. Theor Appl Genet
84:193–200

Nicholls JWP, Morris JD, Pederick LA (1980) Heritability es-
timates of density characteristics in juvenile pinus radiata
wood. Silvae Genet 29:54–61

Development Core Team (2008) R: a language and environment
for statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria URL: http://www.R-project.org

Sae-Lim P, Komen H, Kause A (2010) Bias and precision of esti-
mates of genotype-by-environment interaction. Aquaculture
310:66–73

Shelbourne CJA (1972) Genotype-environment interaction: its
study and its implications in forest tree improvement. In:
IUFRO Genetics SABRAO joint symposium, Tokyo, Japan

Westcott B (1986) Some methods of analysing genotype–
environment interaction. Heredity 56:243–253

http://www.R-project.org


Tree Genetics & Genomes

Wielinga B, Raymond CA, James R, Matheson AC (2009) Ge-
netic parameters and genotype by environment interactions
for green and basic density and stiffness of Pinus radiata D.
Don estimated using acoustics. Silvae Genet 58:112–122

Zamudio F, Baettyg R, Vergara A, Guerra F, Rozenberg P
(2002) Genetic trends in wood density and radial growth
with cambial age in a radiata pine progeny test. Ann For Sci
59:541–549


	Basic density of radiata pine in New Zealand: genetic and environmental factors
	Abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Variability and genetic control
	Estimation of GxE interaction
	Connectedness
	Environmental drivers

	Conclusions
	References



