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RESEARCH

Improving the health benefits of major food staples by 
enhancing micronutrient content of essential vitamins and 

minerals in the edible portions has become an important target 
for plant breeders in recent years (Bouis and Welch, 2010; 
Graham et al., 1999; Gregorio, 2002; Nestel et al., 2006; Pfeiffer 
and McClafferty, 2007a; Sands et al., 2009). Biofortification is 
the genetic improvement of the nutritional value of food crops 
through conventional plant breeding or biotechnology. It is sup-
ported by predictive cost-benefit analysis as an effective approach 
to help reduce micronutrient deficiencies (Nestel et al., 2006) and 
has been endorsed as a priority development goal by the Copen-
hagen Consensus, an international think-tank on global poverty 
(Horton et al., 2009). Global micronutrient deficiencies do not 
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ABSTRACT
Micronutrient malnutrition is a global health 
problem. An improved understanding of the 
genetic variation of important micronutrient 
traits within a potato breeding population will 
help devise breeding strategies for the bioforti-
fication of this important food staple. The data-
set consisted of 556 individuals from 17 full-
sib diploid families grown in 2006 in Huanuco, 
Peru, and 1329 individuals from 32 full-sib fami-
lies grown in 2009 in Ayacucho, Peru. Genetic 
parameters were estimated using univariate 
and multivariate individual Bayesian models for 
micronutrient tuber content including Fe and 
Zn. Genetic variance was additive and heritabil-
ity estimates were moderate (0.36 to 0.57) and 
inflated if the common environment of full-sibs 
was not taken into account. Posterior modes of 
genetic correlation estimates between minerals, 
when analyzed on a dry-weight basis, were all 
positive (0.04 to 0.72) and between minerals and 
tuber dry matter were negative (-0.14 to -0.38). 
On a fresh-weight basis, genetic correlations 
between minerals and tuber dry matter were 
small but positive (0.05 to 0.18). The implica-
tions and challenges for selective breeding to 
enhance micronutrient content in potato tubers 
are discussed.
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tend to receive the same attention (from the media or 
otherwise) as calorific malnutrition and are a problem in 
poorer communities in particular, especially for women, 
infants, and children. Affected communities may often 
have an adequate supply of carbohydrate and protein, 
but lack some vitamins and minerals that are essential 
for healthy body function. The effects of micronutrient 
deficiencies are not always immediately apparent, and 
therefore are often described as a “hidden hunger” (Stein 
et al., 2005). Iron deficiency alone is estimated to impact 
on 2.7 billion people globally (Hirschi, 2009), and the 
effects are reported to include impaired physical activ-
ity, impaired cognitive development, and both maternal 
and infant mortality. Zinc deficiency is also a widespread 
global problem and can lead to infant and child respiratory 
infection, diarrhea, stunting, and mortality (Stein, 2010).

Reducing micronutrient malnutrition is likely to lead 
to an improvement in public health and in economic out-
comes at a local scale and beyond, as well as an improved 
quality of life for individuals (Stein et al., 2005). The 
importance of potato as a food staple in poorer regions of 
Asia, sub-Saharan Africa, and Latin America, combined 
with evidence for genetic variability for mineral concen-
trations in a favorable food matrix, have made biofortifi-
cation a new potential breeding target at the International 
Potato Centre (CIP; Bonierbale et al., 2007). Although 
agronomic and postharvest practices can affect nutritional 
content (Hirschi, 2009; Rengel et al., 1999), the variation 
in micronutrient levels in many food crops is considered 
to have an exploitable genetic component (Graham et al., 
1999; Gregorio, 2002). Knowledge on the level and type 
of genetic variation present in crop gene pools is required 
to help determine an appropriate breeding strategy.

A crop breeding program requires estimates of vari-
ance components, not only to obtain genetic parameters to 
help define a breeding strategy, but also to predict breed-
ing values to identify superior parents and breeding lines 
for variety development. Linear mixed models provide 
an improved representation of the underlying random 
and error components, that is, the ability to model dif-
ferent (co)variance structures when pedigree information 
is used and analysis is further extended to multiple traits 
and multienvironment (MET) trials (Oakey et al., 2007). 
Pedigree information is exploited via the relationship 
matrix A (Henderson, 1976), accounting for the expected 
additive genetic relationships between all individuals in 
the pedigree. Exploiting these relationships, a breeding 
value can be fitted for all members of the pedigree, even 
those without trait records, hence such models are named 
individual or individual plant models (but more commonly 
referred to as animal models) as opposed to the more tradi-
tional family-based approaches. Combining information 
on the individual and all relatives in a selection program 
greatly increases the accuracy of selection, (Lynch and 

Walsh, 1998). Variance components are required for the 
estimation of the BLUPs (best linear unbiased predictors) 
of breeding values. In practice, the true variance compo-
nents are unknown but are estimated from the data either 
by likelihood approaches (usually by REML, restricted 
maximum likelihood; Patterson and Thompson, 1971) 
or from Bayesian inference (e.g., Sorensen and Gianola, 
2002). Bayesian inference using Markov chain Monte 
Carlo (MCMC) sampling methods (often via the Gibbs 
sampler) is attractive for variance component and variance 
ratio estimation, as the posterior distribution provides 
the credible interval as a realistic measure of uncertainty 
around the point estimate (Waldmann and Ericsson, 2006). 
Prior information can also be included in Bayesian infer-
ence if available from previous studies, such as evaluation 
of previous breeding generations. Bayesian methods have 
remained out of reach for most plant breeders because of 
the apparent lack of user-friendly software to apply indi-
vidual models to crop data. This may partly explain the 
limited number of crop breeding programs reporting the 
use of these approaches for genetic evaluation.

Previous studies have demonstrated genetic diversity 
in Andean potato germplasm for micronutrient traits. 
Andre et al. (2007) found significant diversity in the tuber 
content of Fe, Zn, Ca, vitamin C, carotenoids, and phe-
nolics from a sample of 74 genotypes of a CIP core collec-
tion, which was made up of eight taxonomic groups from 
the Solanum tuberosum species. Burgos et al. (2007) identi-
fied genotype variability in Fe and Zn concentrations for 
landrace cultivars from several taxa of Solanum. Derived 
from a base population of diploid landrace accessions, the 
breeding population of the present study was initiated 
in 2004 at CIP in Lima, Peru, in coordination with the 
HarvestPlus Biofortification Challenge Program (Pfei-
ffer and McClafferty, 2007a). The CIP aims to enhance 
the micronutrient content of potato tubers at the diploid 
level and use this material in a prebreeding strategy before 
introduction as parental material into tetraploid breeding 
populations. The objective of this study was to estimate 
variance components and genetic parameters of important 
micronutrient traits from a breeding population based on 
landrace genotypes using data collected from tuber prog-
eny field tests. This will assist in the recommendation of 
selection procedures and the development of a breeding 
strategy for biofortification. The study also illustrates that 
Bayesian procedures using the MCMC to fit the individ-
ual model are now more accessible to plant breeders for 
the routine estimation of variance components, genetic 
parameters, and breeding values.

MATERIALS AND METHODS
Plant Material
Three diploid cultivar groups of Solanum tuberosum, namely 
stenotomum, goniocalyx, and phureja, made up the parental base 



crop science, vol. 54, september–october 2014  www.crops.org 1951

of the individual samples was determined on the basis of differ-
ences in weight before and after oven drying at 100°C and used 
to estimate the concentration in mg/100 g, dry weight. In G1, 
there were 556 observations, which included 487 for mineral 
content and 527 for vitamin C and dry matter content. Family 
sizes analyzed ranged from 23 to 36 genotypes.

Parent selection for the second generation (G2) was based 
on the phenotypic values of individuals from the G1 trials for 
higher Fe, Zn, and other desirable agronomic characteristics. 
Over 40 potential parents were initially chosen, but natural 
attrition (due to male or female parent sterility, for example) 
resulted in a final crossing scheme made up of eight female 
parents and eight male parents intercrossed in a factorial mating 
design, that is, each female member of the group was mated 
to each male member using two sets of four females × four 
males generating 32 full-sib families. For G2, seedlings from 
the factorial crosses were transplanted into the field in Huan-
cayo, Peru (2007–2008), using a RCBD with four replicates 
and 30 plants per replicate. At harvest, a set of tuber families 
from across the complete trial were retained and planted as a 
RCBD in Ayacucho, Peru (2008–2009). Three plants (clones) 
per genotype were planted in each plot within full-sib family 
groups with three replicate groups per family. At harvest, tuber 
samples from clones of each three-plant plot were pooled and 
analyzed for the micronutrient content of peeled tubers by ICP 
and for dry matter content, as previously described. In total, 
there were 1329 progeny records analyzed for Fe, Zn, Ca, and 
dry matter content, with family size ranging from 19 to 74 gen-
otypes. There was no data collected for vitamin C from the G2 
Ayacucho breeding trial.

Data Analysis
A Bayesian approach based on an individual model was used to 
estimate variance components, heritabilities, and genetic corre-
lations for various micronutrient traits in potato. The general 
form of the full univariate model was:

Y = Xb + Z1a + Z2c + Z3f + e

where Y is a vector of observations on the trait under study, 
and X, Z1, Z2, and Z3 are known incidence matrices. In a tra-
ditional generalized linear model, the vector of replicate effects 
b may be considered as fixed effects, but in the Bayesian analy-
sis, b was fitted with a prior of zero mean and large variance. 
The vector of random additive genetic effects of individual 
genotypes, a, has the distribution assumed to be multivariate 
normal (MVN), with the parameters ( 2

a0, ,s A ), c is a vector of 
common environmental effects with the distribution assumed 
to be MVN, with the parameters ( 2

c c0, ,Is ), f is a vector of 
family effects with the distribution assumed to be MVN, with 
the parameters ( 2

f f0, ,Is ), and e is the vector of errors distributed 
MVN with parameters ( 2

e e0, ,Is ), Ic, If, and Ie represent identity 
matrices of size equal to the number of common environments, 
families, and plants, respectively. The subscripted s2 is the vari-
ance of each of the random effects ( 2

as , 2
cs , 2

es  additive genetic, 
common environment, and error variance, respectively). A, the 
numerator relationship matrix, describes the additive genetic 
relationships among individual genotypes and was generated 

population. For the first generation (G1), a sample of cultivars 
of the three species from the study of Burgos et al. (2007) was 
identified as base parents (G0; Table 1) and crossed follow-
ing a nested mating design, that is, each of a group of males 
mated to a subset of females. Seventeen full-sib families and 
four half-sib families from four males and 16 females were gen-
erated; 703825 (‘China Runtush’) and 703421 (‘Poluya’) were 
both female and male parents. The first generation (G1) was 
grown in 2006 in Huanuco, Peru, at an altitude of 3800 m. 
Tuber families, consisting of three tubers (clones) per genotype, 
were grown within full-sib family groups with three replica-
tions of each family in a randomized complete-block design 
(RCBD). Planting distances were 0.3 m between plants and 0.9 
m between rows. At harvest, tuber samples of 12 genotypes, if 
possible, were taken at random from each replicate within each 
family for micronutrient analysis.

All analyses were conducted on peeled tubers. Mineral 
content was determined by inductively coupled plasma–optical 
emission spectrophotometry (ICP) at Waite Analytical Services 
in Australia. For further details of tuber sample preparation and 
analytical methods for mineral determination, see Burgos et 
al. (2007). Micronutrients analyzed included Fe, Zn, Ca, and 
vitamin C. Aluminum was used as an indicator of contamina-
tion of samples with soil or dust, as it is often found in higher 
levels in the soil and lower levels in grains and tubers (Pfeiffer 
and McClafferty, 2007b). Ascorbic acid (AA; vitamin C) con-
centrations were evaluated by the spectrophotometric method 
of Egoville et al. (1988). The method is based on the ability of 
AA to reduce dye 2,6-dichloroindophenol. Concentrations are 
expressed in mg/100 g, fresh weight. The dry matter content 

Table 1. Base parents (G0) of the first generation (G1).

Female Group† Cultivar name

702736 Stn Puca Micnush

703280 Gon unknown

703312 Stn Morada Taruna

703317 Stn Chingos

702815 Stn Morar Nayra Mari

703291 Phu Rosca

703825 Gon China Runtush

704393 Gon Maria Cruz

701165 Stn Calhua Rosada

703168‡ Gon Puca Pishgush

703352 Gon Cashpadana Amarilla

703421§ Stn Poluya

703831 Gon Pampuna

703831 Gon Pampuna

700313 Stn Cuchipa Ismaynin

703197 Stn Yana Sucre

704481 Gon Amarilla

Male Group† Cultivar name

703287 Stn Cceccorani

703421 Stn Poluya

703825 Gon China Runtush

704218 Phu Yema de Huevo
† Stn: Stenotomum; Gon: Goniocalyx; Phu: Phureja.
‡ No progeny measured for mineral content.
§ No progeny measured for vitamin C content.



1952 www.crops.org crop science, vol. 54, september–october 2014

from the pedigree. In matrix format, the random effects from 
the general form of the univariate model are defined by:

æ öé ùé ù é ù s ÷ç ê ú÷ê ú ê úç ÷ç ê ú÷ê ú ê úç s ÷ç ê úê ú ê ú ÷ç ÷ê úê ú ê úç ÷s ÷ç ê úê ú ê ú ÷ç ÷ç ê úê ú ê ú ÷ç ÷ç sê úè øë û ë û ë û

2
a

2
c

2
f

2
e

a 0 A 0 0 0

c 0 0 I 0 0
N

f 0 0 0 I 0

e 0 0 0 0 I



Data were log-transformed for both univariate and mul-
tivariate analyses. Weak priors were assumed for variance 
components in G1 that followed an inverse c2 distribution with 
1 df, s2 ~ Inv – c2(1,f), where f is a scale parameter which 
apportioned the prior variance equally between the variance 
components. Trait variances and covariances estimated from the 
multivariate analysis in G1 were used as priors for the analysis of 
G2 data.

In a factorial design (G2), the full-sib family component of 
variance (the male × female interaction) is expected to estimate 
1/4 of the dominance effect (Bernardo, 2002). The 2

as
 and 2

fs  
variance components have the following genetic 
expectations under the linear mixed model:

σa
2 = 4σGCA

2 = VA +1/ 4VAA

+1/16VAAA +…

σf
2 = σSCA

2 = 1/ 4VD+1/ 8VAA

+1/ 8VAD+1/16VDD+…

where VA is the additive genetic variance; VD is the domi-
nance genetic variance; and VAA, VDD, and VAD are the epistatic 
genetic variances due to interactions of additive effects, domi-
nance effects, and additive and dominance effects at two loci; 

2
GCAs  is the variance due to the general combining ability of the 

parents; and 2
SCAs  is the variance due to the specific combin-

ing ability of the crosses. For this study, epistatic genetic effects 
were assumed negligible, and 2

fs  was not estimated from data 
of the nested design (G1) due to the relatively small number of 
full-sib progenies measured. In general, heritability (narrow-
sense) was obtained from:

2
2 aA

2 2 2 2
P a c f e

V

V
h

s
= =

s + s + s + s ,

where VP is the phenotypic variance with common environ-
ment and family (G2 only) components of variance included 
where appropriate, as indicated by deviance information crite-
rion (DIC) tests (Spiegelhalter et al., 2002), for both univariate 
and multivariate analyses.

The common environment ratio (c2) of full sibs was:
2

2 c c
2 2 2 2

P a c f e

V
c

V

s
= =

s + s + s + s ,

where VC is the common environmental effect of full-sibs.
Heritability in the broad-sense was obtained from:

s + s
=

s + s + s + s

2 2
2 a f

2 2 2 2
a f c e

4
H .

All models were fitted using MCMC methods imple-
mented in R (R Development Core Team, 2012) using 
MCMCglmm (Hadfield, 2010). For univariate analyses, 
80,000 iterations were used, storing every 34th sample after an 
initial burn-in of 12,000. Posterior modes of variance compo-
nents, and narrow-sense heritabilities from a univariate model 
in G1 for all traits were reported. The model for the univari-
ate analyses in G1 included additive and common environment 
effects but ignored any full-sib family effect.

Univariate models were further extended to accommodate 
multivariate analyses, which included Fe, Zn, Ca, vitamin C, 
and dry matter in G1 and Fe, Zn, Ca, and dry matter in G2. 
For multivariate analyses in both G1 and G2, iteration number 
was increased to 250,000, storing every 95th sample after an ini-
tial burn-in of 60,000. Different (co)variance structures for the 
random effects were fitted, as outlined in Table 4, where DIAG 
(diagonal) fitted different trait variances and zero covariances 
between each pair of traits and US (unstructured) fitted both dif-
ferent traits variances and covariances between each pair of traits:
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n

2
ts  is the variance for trait n and ,n n1 2

2
t t�s represents the 

covariance between two traits, n1 and n2. Models were tested 
using the DIC; Models 1 to 5 and Models 1 to 8 were tested for 
G1 and G2 data, respectively. A summary of the genetic param-
eters was provided by the mode and 95% credible interval of the 
posterior distributions.

RESULTS
Table 2 summarizes the mineral and vitamin data for G1 and 
G2 on a dry-weight basis. Coefficients of phenotypic varia-
tion (CV%) for micronutrients were highest for Ca followed 
by vitamin C. Variation for Fe and Zn were similar in both 
G1 and G2. Mean and CV% for tuber percentage dry matter 
content (Table 2) were also similar in both G1 and G2.

Posterior modes of heritabilities for micronutrient 
traits from univariate analyses were moderate, as shown 
in Table 3 (with the 95% credible interval of the posterior 
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(genotype) and residual error, and common environment 
effects with heterogeneous variances and zero covariances 
between response variables (traits). The inclusion of a full-
sib family effect did not improve the model fit. Although 
Model 4 was the preferred model, the broad-sense herita-
bilities may be of interest and are therefore presented, with 
estimates (from Model 6) of 0.57 [0.43, 0.72], 0.55 [0.38, 
0.69], and 0.59 [0.46, 0.74] for Fe, Zn, and Ca, respec-
tively. Model 4 was also the best-fitting model in the mul-
tivariate analysis of G1 (results not shown), although the 
family effect (Models 6–8) was not tested.

Posterior modes of narrow-sense heritabilities, as 
shown in Table 5, were moderate. From G1 to G2, esti-
mates increased for Fe (marginal increase; Fig. 1b), Ca, 
and dry matter, and slightly decreased for Zn (Fig. 1c), 
but were relatively stable given that trials were over two 
different sites and years. Analysis of G2 data was repeated 
using weaker priors of variance components, reducing the 
degree of belief. In comparing the two runs, the MCMC 
trace output appeared to be reasonably stable, with herita-
bility estimates [credible intervals] of 0.44 [0.25, 0.67] for 
Fe, 0.30 [0.17, 0.58] for Zn, 0.60 [0.37, 0.76] for Ca, and 
0.27 [0.15, 0.41] for dry matter.

Posterior modes of the genetic correlations between Fe 
and Zn were positive in both G1 and G2 (Table 5, Fig. 1d). 
Genetic correlations between Ca and Fe/Zn were close to 
zero and shifted to become more positive from G1 to G2, 
and correlations between the mineral traits and vitamin 
C in G1 were effectively zero. Between the mineral traits 
and dry matter content, correlations were negative in both 
G1 and G2 (Table 5, Fig. 1e, 1f ). In comparison, genetic 
parameters estimated on a fresh-weight basis were similar 
in general, with the exception of the genetic correlations 
between the minerals and dry matter content which were 
positive (G2 results shown in Table 5).

DISCUSSION
Genetic Variation and Heritabilities
From a breeding perspective, it is acknowledged that the 
success of biofortification will be determined by the type 

distributions in parentheses). Estimates for all traits were 
inflated when the common environment of full-sibs was 
not taken into account (results not tabulated), such that 
heritabilities for Fe, Zn, and vitamin C were 0.67 [0.46, 
0.79], 0.70 [0.52, 0.81], and 0.76 [0.55, 0.88], respectively.

For the multivariate analyses of G2, eight differ-
ent models were fitted (Table 4). Models 1 and 2 were 
equivalent to running univariate analyses for each trait, as 
all traits are assumed independent with zero covariances 
and heterogeneous variances. Based on the DIC, Model 
4 was the best-fitting model; a multivariate model with 
unstructured (co)variance matrices for both individual 

Table 2. Summary of phenotypic micronutrient data (mg kg-1 dry wt.) and dry matter content (DM, %) in the first and second 
generations (G1 and G2, respectively).

Cycle Trait n Minimum Maximum Mean
Standard 
deviation CV%†

G1 Fe 487 9.5 37.3 19.0 3.9 20.4

Zn 487 7.2 27.5 15.8 3.0 18.7

Ca 487 40.5 780.0 163.9 87.2 53.2

vitamin C 527 140.4 918.7 399.5 117.9 29.5

DM 487 15.5 36.4 26.4 2.9 11.0

G2 Fe 1329 7.0 42.5 21.0 5.0 23.7

Zn 1329 2.8 38.9 15.4 3.4 22.4

Ca 1329 52.3 689.7 171.9 71.0 41.3

DM 1326 12.6 35.0 26.0 3.3 12.1
† Coefficient of variation as the standard deviation expressed as a percentage of the mean.

Table 3. Posterior modes for variance components and 
heritabilities (h2) from univariate analyses of first generation 
(G1) data.

 

Variance components

c2†

h2 

[95% credible 
interval]σa

2 σc
2 σe

2

Iron 0.034 0.015 0.024 0.21 0.45 [0.30 0.65]

Zinc 0.028 0.013 0.019 0.22 0.42 [0.32 0.63]

Calcium 0.109 0.031 0.133 0.15 0.36 [0.18 0.70]

Vitamin C 0.043 0.035 0.033 0.32 0.38 [0.23 0.62]

Dry matter 0.014 0.011 0.008 0.35 0.41 [0.31 0.54]
† c2, common environment ratio of full sibs.

Table 4 (Co)variance structures and model deviance informa-
tion criterion (DIC) for the multivariate analyses of G2 data 
where DIAG (diagonal matrix) has a zero covariance struc-
ture and US is an unstructured covariance between the 
response variables.

Model Individual
Common 

environment Family Error  —— DIC† —— 

1 DIAG – – DIAG 2008 2001

2 DIAG DIAG – DIAG 1470 1472

3 US – – US 781 781

4 US DIAG – US 0 4

5 US US – US 14 12

6 US DIAG DIAG US 38 43

7 US US DIAG US 32 36

8 US US US US 31 32
†Difference in DIC (2 runs) from Model 4 (set to zero).
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of genetic control and amount of genetic variation, the 
relationships between the target micronutrients with other 
important agronomic and quality traits, and genotype sta-
bility for target micronutrients across different environ-
ments. In the present study, the additive genetic variance 
(VA) was estimated directly making use of the additive 
genetic relationships via the A matrix, and the dominance 
variance (VD) from the estimate of the full-sib family effect 
( 2

fs ), with the expectation of 1/4VD. This study supports 
the hypothesis that tuber micronutrient content is under 
genetic control, and in the population studied, this con-
trol appeared to be additive. There was insufficient data 
to reliably detect any real nonadditive genetic component. 
Exploiting the additive gene effects present in this dip-
loid population will result in the genetic improvement of 
important micronutrients in potato tubers. Furthermore, 
the magnitudes of narrow-sense heritability estimates point 
towards individual rather than family-based selection as a 
selection strategy for important micronutrients. The mod-
erate heritabilities also suggest that the level of within-fam-
ily variation is such that superior individuals will potentially 
be identified from within a number of families. Graham et 
al. (1999) suggested that the mechanisms controlling the 
uptake, transport, and loading of micronutrients are likely 
to be additive, indicating that emphasis should be placed 
on an approach of population improvement from recur-
rent selection. Parents of the G2 progeny were selected from 
individuals of G1 that had higher Fe and/or Zn, but selec-
tions also included genotypes with desirable agronomic fea-
tures. Truncation selection is expected to reduce additive 
genetic variance due to Bulmer’s gametic-phase disequi-
librium (Falconer and Mackay, 1996). No inference can be 
made on this effect with these data, of course, because of 
the large sampling errors involved, but it should be noted 

that selection in this case was not strictly truncated, and 
the selection differential would have been reduced because 
many preferred crosses did not result in progeny. There is 
limited information available in the published literature 
about the genetic control of micronutrient content in staple 
crops, including potato, using data from designed crossing 
trials. In studies on the variation in potato clones (com-
mercial tetraploid breeding lines and cultivars), Brown et 
al. (2010, 2011) estimated broad-sense heritabilities and 
reported significant genetic variation and genotype-by-
environment interaction (GEI) for tuber Fe content, but a 
scarcity of exploitable variation for Zn tuber content in two 
out of three trial locations. A study by Haynes et al. (2012) 
on S. tuberosum ´ (S. phureja-S. stenotomum) 4́ –2´ clones 
found significant levels of genetic variation for a number 
of micronutrients and a GEI for Zn. In an assessment of 
23 potato genotypes for Zn content after applications of 
foliar Zn fertilizers over 4 yr, White et al. (2012) identified 
significant genotype differences and environmental effects, 
but no evidence of GEI. Burgos et al. (2007) found sig-
nificant environmental effects and GEI over two highland 
locations for Fe and Zn in native Andean diploid acces-
sions, a number of which formed the basis of the breeding 
population in the present study. The GEI in this case was 
due largely to a rescaling of genotypes suggesting hetero-
geneity of genetic variance, which is of less concern than if 
there had been a significant reranking of genotypes.

Although not apparent in the present study, significant 
changes in heritability estimates for tuber mineral con-
tent across trials and/or years may be expected, given that 
various environmental components affecting crop mineral 
availability have been reported, such as the physical and 
chemical properties of soil (e.g., White and Zasoski, 1999; 
Po et al., 2010). Low heritabilities due to large within-trial 

Table 5. Posterior modes for heritability (diagonal, boldface) and additive genetic correlations (below diagonal) for Fe, Zn, Ca, 
vitamin C, and tuber dry matter content from a multivariate analysis of G1 and G2 data (Model 4) estimated on a dry-weight or 
fresh-weight basis.

Trait Iron Zinc Calcium Vitamin C Dry matter

G1, dry wt. basis

   Iron 0.41 [0.29  0.50]

   Zinc 0.45 [0.32  0.64] 0.38 [0.27  0.47]

   Calcium 0.04 [–0.23  0.34] 0.12 [–0.15  0.39] 0.42 [0.29  0.64]

   Vitamin C –0.01 [–0.18  0.29] 0.10 [–0.15  0.30] 0.05 [–0.27  0.33] 0.38 [0.28  0.50]

   Dry matter –0.23 [–0.42  –0.06] –0.24 [–0.41  –0.07] –0.19 [–0.36  0.07] –0.06 [–0.28  0.10] 0.32 [0.22  0.38]

G2, dry wt. basis

   Iron 0.43 [0.28 0.65]

   Zinc 0.72 [0.42 0.88] 0.36 [0.17 0.54]

   Calcium 0.35 [–0.04 0.61] 0.57 [0.18 0.76] 0.57 [0.37 0.71]

   Dry matter –0.34 [–0.61 0.08] –0.38 [–0.66 0.10] –0.14 [–0.49 0.20] 0.42 [0.25 0.57]

G2, fresh wt. basis

   Iron 0.45 [0.27 0.59]

   Zinc 0.61 [0.33 0.84] 0.26 [0.14 0.42]

   Calcium 0.07 [–0.32 0.52] 0.45 [–0.02 0.77] 0.51 [0.31 0.80]

   Dry matter 0.18 [–0.13 0.36] 0.14 [–0.13 0.38] 0.05 [–0.23 0.27] 0.52 [0.41 0.60]



crop science, vol. 54, september–october 2014  www.crops.org 1955

error variances will compromise the selection for micronu-
trient traits in the early stages of a selection program. Accu-
mulation of Zn (and, to a lesser extent, Fe) in edible por-
tions of food crops is reported to be particularly sensitive to 
environmental variables (Pfeiffer and McClafferty, 2007b), 
which suggests that more effective strategies to identify 
genotypes with high stable mineral expression across envi-
ronments may be required. Soil Zn deficiency is common 
in many crop growing regions (Cakmak, 2008; White and 
Zasoski, 1999), and its availability and accumulation in the 
edible portions of crops is therefore likely to be a complex 
function of soil mineral status and interactions with other 

environment, agronomic, and management factors (e.g., Po 
et al., 2010; White and Zasoski, 1999; White et al., 2009). 
In durum wheat (Triticum aestivum L.), for example, there 
is evidence that the N status affects Fe and Zn accumula-
tion in grain (Kutman et al., 2011) and N availability itself 
will be dependent on soil N status and condition, among 
other interacting factors. In potato tubers, Zn assimila-
tion in tubers has been linked with the co-transport of N 
(White et al., 2012), but in long-term field studies, Šrek et 
al. (2010) found no differences in the Fe and Zn content 
of tubers under different rates of N, K, and P field treat-
ments. Further research on the extent and type of GEIs of 

Figure 1. Marginal posterior distributions for narrow-sense heritability of: (a) vitamin C in Generation 1 (G1); (b) Fe in G1 and G2; (c) Zn in 
G1 and G2. Marginal posterior distributions for additive genetic correlation between: (d) Fe and Zn in G1 and G2; (e) Fe and dry matter 
content in G1 and G2; (f) Zn and dry matter in G1 and G2; where the broken line is G1 and the solid line is G2, and the vertical lines indicate 
the posterior modes of the distributions.
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key micronutrients in potato would give some indication 
of the requirements for MET testing and the benefits of 
developing a marker-assisted selection strategy.

In the RCBD, replication of full-sib families should 
go some way at least to remove confounding that occurs 
between the common environment effect and dominance 
effects. Failing to account for nonadditive and nongenetic 
effects can inflate heritabilities and reduce the precision 
of breeding value estimates. The grouping of families is 
common in early-stage trials and is often preferred by the 
breeder for practical reasons, for example, visual evaluation of 
groups of individuals with known parental combinations. A 
common environment effect was fitted in the analysis which 
appeared to account for some bias in the additive variance 
estimates; ignoring the common environment of full-sibs 
increased heritability by 0.22 for Fe and 0.28 for Zn in G1. 
Improving heritability estimates may require the dispersal 
of family groups which will also help to remove confound-
ing between common environment and dominance effects 
(random allocation of individuals rather than families), more 
replication (as a trade-off with selection intensity), as well as a 
greater understanding and control of the nongenetic factors, 
such as soil heterogeneity within a trial. Local field variation 
on a scale that may not be accounted for in the trial design 
by blocking would be perhaps better accommodated by also 
including spatial effects within the mixed model framework 
(Gilmour et al., 1997; Piepho et al., 2008).

Difficulties in recovering useful genetic variation 
from unadapted wild relatives or landraces are a barrier 
for its use in many crop species. Andean landrace potatoes 
are a valuable source of germplasm for potato breeding 
and an important part of the diet for rural populations in 
Peru living in the high Andes (Burgos et al., 2007). Bio-
fortification with Fe and Zn is therefore likely to benefit 
poorer communities at risk of micronutrient malnutrition 
in this region (Burgos et al., 2007). While diploid land-
race potatoes are not adapted outside of the highland trop-
ics, population improvement by recurrent selection at the 
diploid level may increase micronutrient trait values and at 
the same time improve tuber shape. Taking advantage of 
variability for tuber dormancy and selecting for functional 
levels of unreduced gametes will enable transfer of gains 
obtained at the diploid level to more widely-adapted tetra-
ploid populations and the development of varieties suited 
for new environments and wider scale deployment. The 
method to increase ploidy level to the tetraploid via the 
4´–2´ first division restitution mechanism is well estab-
lished in potato (Ortiz et al., 1991), but the effects on the 
genetic control of micronutrient traits in the 4´ genetic 
background will need to be determined.

Genetic Correlations
For the improvement of staple crops, breeding programs will 
seek to simultaneously improve important micronutrients 

such as Fe and Zn without detriment to yield and qual-
ity. In the present study, positive genetic correlations were 
found between Fe and Zn, indicating that evaluation and 
selection for one will result in concomitant increase in the 
other. Repeated analysis using weaker priors of variance 
components resulted in a posterior mode of the genetic 
correlation between Fe and Zn of 0.80 [0.40 0.91]. Datasets 
from several centers of the Consultative Group on Interna-
tional Agricultural Research (CGIAR) have demonstrated 
genetic variation and positive correlations between Fe and 
Zn across different genotypes of the range 0.44 to 0.61 for 
a number of crops including potato, maize (Zea mays L.), 
lentil (Lens culinaris Medik.), wheat, and yam (Dioscorea spp.; 
Gregorio, 2002; Pfeiffer and McClafferty, 2007b), but these 
studies gave no indication of the type of genetic control in 
these crops. In the present study, negative genetic correla-
tions were found between dry matter and Fe, Zn, Ca, and 
vitamin C (genetic correlation close to zero for vitamin 
C in G1) when analyzed on a dry-weight basis. In con-
trast, these genetic correlation estimates were positive (but 
small) when analyzed on a fresh-weight basis. Although 
no data were available to investigate further, a possible 
explanation may be due to the greater concentration of 
some minerals at the surface layers of tubers, as is reported 
for minerals such as Fe and Ca (Subramanian et al., 2011). 
The higher surface area–volume ratio of small tubers or a 
dilution effect as tubers increase in size may result in the 
relationship between minerals and dry matter on a fresh-
weight basis being confounded by tuber size (with smaller 
tubers tending to have a higher dry matter concentration 
than large tubers). A negative genetic correlation between 
minerals and dry matter content is not particularly help-
ful for breeders, as a higher dry matter content is often 
associated with favorable sensory and cooking characteris-
tics in potato. Consumer acceptance of new and improved 
cultivars has proved difficult when failing to match the 
preferred traditional types for certain characteristics. For 
example, breeding sweet potato (Ipomoea batatas var. bata-
tas) for high carotene concentration to combat vitamin A 
deficiency has encountered market resistance in Uganda, 
where the preference is for white roots. An education pro-
gram has been necessary to increase consumer acceptance 
for orange roots in the region (Thomas zum Felde, CIP, 
personal communication, 2012). Relatively low levels of 
Ca are found in potato tubers, and therefore potatoes are 
unlikely to provide a useful source of the macronutrient 
given the amount required in the human diet on a daily 
basis (Brown et al., 2012). However, as Ca deficiency in 
potato tubers is reported to be related to the increased 
incidence of several physiological disorders (Palta, 1996), a 
better understanding of its genetic control and relationship 
with Fe and Zn is likely to be of interest with regard to the 
possible consequences of long-term recurrent selection to 
enhance tuber micronutrient content. Further studies are 
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required to understand the relationships between micro-
nutrient content and agronomic and end-use quality char-
acteristics in potato.

The micronutrient content of tubers reported in this 
study indicates that this genetic material will provide a 
useful source of dietary Fe and Zn, acting as a suitable base 
for further improvement. For example, the maximum 
mineral content in the G1 progeny generation (on a fresh-
weight basis) was 10.4 mg kg-1 for Fe and 6.7 mg kg-1 
for Zn (data not shown). A household average consump-
tion of 253 g ae-1 d-1 (grams per adult male equivalent per 
day) in Peru (Rose et al., 2009) will therefore provide 
56% of the estimated average requirement (EAR) of Fe 
for children aged 4 to 8 yr and 28% for female adults aged 
19 to 30, based on dietary reference intakes (http://fnic.
nal.usda.gov/dietary-guidance/dietary-reference-intakes/
dri-tables, verified 6 May 2014). Similarly, consumption 
will provide 37% of the EAR of Zn for children aged 4 
to 8 yr and 22% for female adults aged 19 to 30. How-
ever, these estimates make a number of assumptions, and 
actual values will depend on various factors such as micro-
nutrient bioavailability. The relationship of target micro-
nutrients with promoters and inhibitors may affect bio-
availability on consumption (Welch and Graham, 2004). 
Pfeiffer and McClafferty (2007b) suggested that strategies 
to breed micronutrient-dense crops should consider indi-
rect selection for bioavailability and reduced postharvest 
and cooking losses, as well as direct selection for increased 
concentration. Vitamin C has been shown to act as a 
promoter that enhances the bioavailability of Fe and Zn. 
From multivariate analysis in the present study, genetic 
correlations between Fe and vitamin C, and between Zn 
and vitamin C were essentially zero, given the posterior 
modes and credible intervals estimated from these data.

Bayesian Analysis of Genetic Parameters
The implementation of a MCMC procedure to fit the 
individual model in this study using the R package 
MCMCglmm (Hadfield, 2010) demonstrates that Bayes-
ian approaches, which can be applied to both Gaussian 
and non-Gaussian traits, are now more readily accessible 
to plant breeders. Other available software such as Win-
BUGS (Lunn et al., 2000) and MTGSAM (Van Tassell and 
Van Vleck, 1996) have been used for tree and crop breed-
ing data to estimate quantitative genetic parameters, for 
example, Waldmann et al. (2008) in Scots Pine; and Gon-
çalves-Vidigal et al. (2008) in common bean. Waldmann 
(2009) presented the case for WinBUGS as an evaluation 
tool for nonspecialists but Hadfield’s MCMCglmm-R is 
arguably more approachable for many plant breeders as 
it shares similar syntax with the popular plant breeding 
and trial evaluation software ASReml-R (Butler et al., 
2009), a point noted by Apiolaza et al. (2011). That said, 
it should not be treated as a black box. The appropriate 

choice of priors is perhaps more important for the analysis 
of plant breeding data as small datasets are more typical 
than in animal or forest tree breeding studies, and priors 
may therefore have a greater influence on the posterior 
distribution; in this context, poor prior choice will not be 
overwhelmed by the data. A cautionary approach is there-
fore required in this instance, as priors can sometimes and 
unwittingly lead to incorrect inferences for the posterior 
modes due to the Markov Chains becoming trapped at a 
local maximum. In the present study, alternative priors 
were tested, following the recommendations of Gelman 
(2006), using the JAGS program (Plummer, 2003) within 
R (package rjags). This included a uniform prior on the 
variance, standard deviation, and heritability as nonin-
formative priors. Although not shown, results compared 
favorably with those obtained using the inverse gamma 
distribution, with small equal parameters as the prior dis-
tribution for the variances which are, by default, those 
used in the MCMCglmm package. It seems reasonable 
that estimates from a previous generation (Gn–1) should 
be an appropriate choice of priors for the following gen-
eration (Gn), which was the approach taken in the present 
study. Blasco (2001) and Waldmann and Ericsson (2006) 
reviewed the advantages and disadvantages of REML and 
Bayesian based methods, as well as the choice of priors, 
when applied to the individual animal model.

CONCLUSIONS
Additive genetic effects were important for the micro-
nutrient traits examined in this study, with no detection 
of significant nonadditive effects. Genetic correlations 
between Fe and Zn were strong and positive. An improve-
ment strategy employing recurrent cycles of selection may 
therefore optimize genetic gains in this population for 
micronutrients Fe and Zn that are important targets for 
the biofortification of potato tubers. The genetic correla-
tions between micronutrients (Fe, Zn, Ca) and vitamin 
C were close to zero, and genetic correlations between 
micronutrients (Fe, Zn, Ca) and tuber dry matter, an 
important sensory and processing character, were negative 
when analyzed on a dry-weight basis, and small but posi-
tive when analyzed on a fresh-weight basis. Trial design 
to remove the common environment of siblings and to 
better account for potential local-scale field heterogene-
ity of mineral availability should be considered. With 
publically-available software such as MCMCglmm for 
R (Hadfield, 2010), Bayesian procedures to fit the indi-
vidual model are now more accessible for plant breeders 
to estimate variance components and genetic parameters. 
As well as breeding issues, it is generally acknowledged 
that the success of biofortification in potato and other 
crop species will also depend on nongenetic factors such 
as mineral bioavailability, palatability, and the acceptance 
of new cultivars over traditional types.
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