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Abstract Field data and simulation were used to

investigate replication within trials and the allocation

of replicates across trial sites using partial replication

as an approach to improve the efficiency of early-stage

selection in a potato breeding programme. Analysis of

potato trial data using linear mixed models, based on

four-plant (clonal) plots planted as augmented par-

tially-replicated (p-rep) designs, obtained genetic and

environmental components of variation for a number

of yield and tuber components. Heritabilities, trial-to-

trial genetic correlations and performance repeatabil-

ity of clonal selections in p-rep trials and in subsequent

fully replicated trial stages were high, and selection

was effective for the economically important traits of

marketable tuber yield and tuber cooking quality.

Simulations using a parameter-based approach,

pertaining to the variance components estimated from

the p-rep field trials, and the parametric bootstrapping

of historic empirical data showed improved rates of

genetic gain with p-rep testing over one and two

locations compared with testing in fully replicated

trials. This potato breeding study suggests that the

evaluation and selection of a clonal field crop in fully

replicated trials may not be optimal in the early stages

of a breeding cycle and that p-rep designs offer a more

efficient and practical alternative.

Keywords Breeding programme � Field trials �
MET � Multi-environment trials � P-rep � Partial
replication

Introduction

The initial stage of evaluation in a potato breeding

programme comprises the visual assessment and

phenotypic selection of single plants, or the evaluation

and selection of families from formal progeny testing

(Mackay 2007; Bradshaw et al. 2009). This is

followed by more intense within-family selection

from replicated clonal field trials. Traditionally, under

these schemes there is a reliance on an adequate plant

multiplication rate to allow entry of selected candi-

dates into replicated field trials as early as possible.

Potato, via the clonal propagation of tubers, has a

relatively low multiplication rate that increases the
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generation interval and delays testing across multiple

locations, slowing the rate of genetic progress and the

time to deploy improved cultivars.

Replication demands a compromise between selec-

tion accuracy and the intensity of selection; increasing

replication will improve the accuracy of genotype

estimates but, with the reasonable assumption that the

total number of available test plots or other test

resources are fixed, the reduction in the number of

tested candidates will affect the genetic response to

selection. The precision and accuracy of assessment

for genotype differences, along with their size and

significance, are important considerations for

advanced stage testing in breeding programmes and

regional variety trials. Accuracy is desirable for early-

stage trials also, but the emphasis at this stage is on the

ranking of a large number of test entries. For early-

stage evaluation, genotypes are often considered as

random effects in a linear mixed model and their

BLUPs (best linear unbiased predictions) are shrunk

towards the population mean accordingly (Robinson

1991; Smith et al. 2005; Piepho et al. 2008). Under this

evaluation framework, correlated data such as pedi-

gree information and localised spatial field trends can

be included for the prediction of breeding values and

to enhance the accuracy of evaluations. This can be

further extended to the multivariate analysis of trials

over multiple locations.

Increasing the amount of information results in

genotype predictions becoming less conservative and

closer to their true values but previous work has

indicated that under certain circumstances (e.g., a high

proportion of genetic to phenotypic variance), greater

genetic gain may be achieved by relaxing the demands

for selection accuracy through planting fewer repli-

cated genotypes and screening a greater number of

unreplicated genotypes (Bos 1983; Gauch and Zobel

1996; Bos and Caligari 2008). Unreplicated trials

provide breeders with an opportunity to test genotypes

for quantitative characters, such as yield, in the early

stages of a breeding programme before there are

sufficient quantities of seed or seed tubers available for

planting in replicated trials. Trial designs are often

made up of the unreplicated candidate genotypes and a

number of replicated controls or ‘checks’ that are used

for error control (Kempton 1984). The use of

augmented trial designs was first proposed by Federer

(1956) in which replicated controls are allocated by

randomisation into some form of systematic blocking

arrangement, such as randomised complete block or

row-column designs, and the remainder of the trial

filled with unreplicated candidates. Checks are usually

made up of a number of cultivar ‘standards’, but the

use of these controls depletes the number of candidates

that are available for selection and therefore poten-

tially reduces the intensity of selection. To realise any

improvement in selection efficiency, there has to be a

substantial reduction in plot error when check fre-

quency is high, particularly when heritabilities are

high (Kempton 1984; Kempton and Gleeson 1997). To

avoid the reduction of selection candidates due to

check cultivars, Cullis et al. (2006) and Smith et al.

(2006) described partially replicated (p-rep) designs in

which all entries are selection candidates, with a

proportion of the trial plots allocated to replicated

candidates and the remaining plots filled with unrepli-

cated candidates. This can be extended to multi-

environment trial (MET) evaluation where a propor-

tion of candidate genotypes can be replicated within

and across trials. More recent studies have considered

the design of augmented p-rep trials (Clarke and

Stefanova 2011; Williams et al. 2011, 2014) and their

performance inMET field trials (Moehring et al. 2014;

Rattunde et al. 2015).

In New Zealand, the evaluation of historic potato

field (replicated) trials at early selection stages has

found high heritabilities of greater than 0.6 (as the

proportion of genotypic or additive genetic variance to

total phenotypic variance) for a number of yield and

tuber traits, including total and marketable yields

(Paget et al. 2015a) and tuber dry matter content

(unpublished). Further, there is evidence to support the

distribution of genetic material to multiple locations

for MET evaluation in the early clonal stages as soon

as possible (McCann et al. 2012). This has motivated

the exploration of p-rep trials to increase early-stage

selection efficiency in The New Zealand Institute of

Plant & Food Research Limited (PFR) potato breeding

programme, as previous observations suggest that full

replication in early stage trials may not be optimal and

slows the allocation of candidates for testing over

multiple locations.

In this study, genetic parameters and the repeata-

bility of clonal performance were measured, based on

selections from augmented p-rep trials for tuber

(marketable) yield and cooking (fry) quality. Variance

components estimated from the p-rep trials provided

the basis for inference from parameter-based
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simulations, allowing determination of the expected

responses to selection. Evaluations of simulated data

were over one or two ‘environments’ and used a linear

mixed model with varying numbers of tested geno-

types, heritabilities and genetic covariances for a

single stage of selection. A second method of simu-

lation, based on the assessment of historical trial data,

used a parametric bootstrapping approach with trial

analysis based on a formal p-rep design structure.

Materials and methods

Trial data

The genotypes tested were random selections from

single-plant plots (clonal stage 1 or C1 trials)

harvested in March 2011 at Lincoln, and were made

up of 44 full-sib and 17 half-sib families. The

selections were representative of genotypes screened

as part of the PFR potato breeding programme. Field

trials were planted for three consecutive years (2011,

2012 and 2013) at the Lincoln PFR research site in the

South Island and for one year (2013) at the Pukekohe

PFR research site in the North Island of New Zealand

(Fig. 1). In the first season of field trials (2011–2012),

a p-rep clonal stage 2 trial was designed using DiGGer

(Coombes 2011), a Windows console program, by

supplying an input file. The trial (LN-C2-11) was

designed to be resolvable for the complement of

replicated genotypes in two dimensions, i.e. across

row-blocks and column-blocks (Fig. 2), and consisted

of 236 entries and two check cultivars (‘Fraser’ and

‘Agria’) planted as four-tuber (four-by-one) plots. A

p-rep trial was established again in the 2012–2013

season (LN-C2-12) with 200 of the same entries from

the previous season and the same two checks. The

target replication level of both C2 trials was p = 1.20

(where 20% of test entries are replicated), but the

actual replication level in the first year was approx-

imately p = 1.18 (18% of test entries were replicated)

because of genotype attrition.

From the p-rep LN-C2-11 (2011–2012) trial, 48

genotypes were randomly selected and planted in a

fully replicated trial in the 2012–2013 season (LN-C3-

12). A final year of fully replicated field trials was also

carried out for the 48 genotype selections in the

2013–2014 season at both Lincoln (LN-C4-13) and

Pukekohe (PK-C4-13). [Note that trials with the same

number suffix were grown in the same season and

corresponds to the year of planting; three consecutive

seasons numbered 11 (2011–2012), 12 (2012–2013)

and 13 (2013–2014)]. All Lincoln trials were planted

in October and harvested in March the following year,

approximately 150–160 days after planting. The

Pukekohe trial was planted in October and harvested

in late February approximately 140 days after plant-

ing. Fully replicated trials were designed as Latinized

row-columns with CycDesigN v4.0 (CycSoftware

2009) and planted with three replicates in six-tuber

(six-by-one) plots (Lincoln) and two replicates in

twelve-tuber (six-by-two) plots (Pukekohe).

At harvest, plot yield was recorded for analyses, as

a marketable tuber yield, which was the graded yield

after undersized (less than 50 g) and defective tubers

had been removed. Defective tubers, for example, may

have been afflicted with secondary or abnormal

growth, rot or excessive greening. Five tubers from

each plot were also randomly sampled, chemically

treated with sprout suppressant (Propham�) and stored

at 10 �C. These tubers were removed from cold

storage in September after 120 days and held for 24 h

under ambient conditions (*17–19 �C). Potato slices

(crisps) of *1 mm thickness were then cooked by
Fig. 1 Principal trial locations for the PFR potato breeding

programme, within New Zealand
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frying for 2 min at 190 �C in canola oil and scored on

a 1–9 scale (Fig. 3) for fry score, with 1 indicating a

high fry quality (light coloured, with no evidence of

discolouration) and 9 indicating a very poor fry quality

(blackened discolouration).

Statistical analysis of trial data

Trials were first analysed with a univariate linear

mixed model, general form given by:

y = Xm ? Wb ? Zg ? e where y is the n 9 1

vector of trait observations, m is a (p 9 1) vector of

fixed effects including the overall trial mean, b is a

q 9 1 vector of random non-genetic design factors,

b�Nð0; Ir2bÞ, e.g. replicate and/or block (within

replicate) and g is a (r 9 1) vector of random genetic

effects, g�Nð0; Ir2gÞ. The vector of random error

terms is given by e�Nð0; Ir2eÞ while X is a known

n 9 p incidence matrix for the fixed effects, W

(n 9 q) and Z (n 9 r) are known incidence matrices

for the random effects, I are the relevant p 9 p, q 9 q

and r 9 r identity matrices and the subscripted r2 is

Fig. 2 Partially replicated

(p-rep) potato trial with

1:196 unreplicated entries

(grey, not labelled), 197:236

replicated entries (yellow)

and two checks (237

(blue):238 (red)). (Color

figure online)

Fig. 3 Potato fry colour assessment scale, where 1 displays very high quality (no discolouration) and 9 displays very poor quality

(blackened discolouration). (Color figure online)
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the variance of each of the random effects. For each

trait, analyses considered the blocking structure of the

trial designs, allowing for independent random effects,

such as blocks, and independent plot errors. For the

LN-C2-11 and LN-C2-12 (p-rep) trials, check culti-

vars were fitted as fixed effects. There were no checks

planted in trials LN-C3-12, LN-C4-13 and PK-C4-13.

A fixed covariate was fitted in LN-C2-11 and LN-C2-

12 to account for some waterlogging that had occurred

for a short period over the duration of the trials. A fixed

covariate was also fitted to account for the loss of

plants in a small number of plots, but any plot with two

plants or fewer was considered as a missing value. For

tuber yield, a spatial model was tested by separating

the random error term e into spatially dependent

(autocorrelated) and spatially independent errors,

following the AR1 spatial correlation model of

Gilmour et al. (1997). A likelihood-ratio test was used

as the criterion to test for the importance of the fitted

spatial effects, which were retained as an addition to

the trial blocking features if model fit was improved.

The main emphasis for each univariate trial analysis

was estimating the genotypic (total genetic) values of

candidate varieties, i.e. the ‘production worth’ of

varieties rather than their value as potential parents,

but the prediction of breeding values was also

considered. Therefore, data were also analysed after

replacing the independent genotypic variance given by

Ir2g with a pedigree-based genotypic variance given by

Ar2a, the variance–covariance matrix of the additive

genetic effects (breeding values), where A is the

numerator relationship matrix that provides the

between-genotype relationship as two times the coef-

ficient of coancestry. The pedigree was built from PFR

field books and an online potato pedigree database

(van Berloo et al. 2007). Variance component esti-

mates provided an indication of the magnitude of

signal-to-noise expected from p-rep potato trials and

were used as basis to infer the expected response to

selection using parameter-based simulations. In gen-

eral, heritabilities were obtained from either the

proportion of additive to phenotypic variance (h2), or

the proportion of genotypic to phenotypic variance

(H2, excluding the pedigree), with the phenotypic

variance including the genetic, block/replicate and

error variances. As variance components are

unknown, the empirical genotypic (total genetic) and

breeding values (EBVs) were obtained from the

BLUPs of random effects (Henderson 1975). Coeffi-

cients of correlation were obtained for the perfor-

mance of the 48 genotypes common between C2 and

C3 trials, based on their BLUPs of genetic and

breeding values.

The univariate model was also extended to a

multivariate analyses of MET data for the five trials,

LN-C2-11, LN-C2-12, LN-C3-12, LN-C4-13 and PK-

C4-13. Random effects were assumed to follow a

multivariate normal distribution with means and

variances defined by:

b
a
e

0
@

1
A�N

0
0
0

0
@

1
A;

B0 � Ib 0 0
0 G0 � A 0
0 0 R� In

2
4

3
5

2
4

3
5

where 0 are null matrices.B0,G0 andR are covariance

matrices for design factors, genetic (additive) and

residual effects, respectively, and � is the direct

(Kronecker) product. The matrix B0 is a diagonal

matrix of (non-genetic) scaled identity matrices. The

variance–covariance structure of plot error effectsR is

assumed to be block diagonal and specified as a

separable AR1 process to account for local spatial

trend as in the single trial analysis, with the indepen-

dent error variance for each trial. The unstructured

(US) genetic variance–covariance matrix was approx-

imated using a factor analytic (FA) approach as

outlined by Smith et al. (2001) with separate residual

variances modelled for each trial. The FA method

aims to reduce the rank of the genetic covariance

matrix in multivariate analysis and is considered a

parsimonious approximation to the US genetic (co)-

variance matrix. It assumes that t trials (or traits) are

linear combinations of a few latent variables (the

common factors that bring about the correlations

between variables) and any variance not explained by

these common factors is fitted separately as trial

specific factors: G0 ¼ KK0 þ S; where K is a (t 9 k)

matrix of factor loadings:

K ¼

U11 U12 � � � U1k

U21 U22 � � � U2k

..

. ..
. . .

. ..
.

Ut1 Ut2 � � � U5k

2
6664

3
7775

and S is a (t9 t) diagonal matrix of specific variances.

Genetic variances and covariances were estimated

simultaneously from an FA model of order 2 for the
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same trait measured in different trials or ‘environ-

ments’ (locations and/or years) and the estimate of

trial–trial genetic correlations, also known as Type B

genetic correlations (Yamada 1962; Burdon 1977), for

each trait. Further details of FAmodels can be found in

Smith et al. (2001) and Meyer (2009). Data were

analysed using R (R Development Core Team 2012)

and ASReml-R (Butler 2009; Butler et al. 2009).

Simulation of genetic response: parameter-based

simulation

The first approach to simulation used a stochastic,

parameter-based method to model selection in repli-

cated and p-rep trials over both one and two locations

for a single clonal selection stage. In predicting the

response to selection, it was assumed that the trait

under consideration was normally distributed. Normal

distributions of true genotypic values (g) and envi-

ronmental deviations were obtained from given esti-

mates of genetic and environmental variances, and

these were used to produce a simulated breeding

population. In this case, the vector of additive effects

a and non-additive effects d were assumed to be

mutually independent, so that the vector of total

genetic effects (g = a ? d) had distribution

g�Nð0; r2aIþ r2dIÞ. Alternatively, the additive and

non-additive effects could be sampled independently

from separate distributions when assuming no covari-

ance between additive and non-additive genetic

effects. In the present study, the difference between

the two sampling strategies is likely to be small, but

independent sampling allows for greater flexibility,

e.g., allowing for additive genetic covariances

between related individuals, if a pedigree structure is

incorporated, and including dominance as a separate

component. For p-rep trials, the level of replication

was set at 25% (p = 1.25), which was compared with

selection from fully replicated trials with two repli-

cates (p = 2). Assuming that the genetic values for the

trait were polygenic, the phenotypic variance was

arbitrarily set at 10, with heritability varying from 0.1

to 0.8, giving an equivalent signal-to-noise ratio r2g=r
2
e

that ranged from 0.11 to 4.0 (Table 1). For selection

over two locations, the sampling of genetic values was

from a multivariate normal distribution with the same

genetic variances and genetic correlations of 0.2, 0.5

and 0.8. The sites were assumed to be equally

weighted so that the true genotypic value for each

individual was the mean of the sampled genotypic

values. Four test scenarios (a, b, c and d) were

simulated for each of p = 1.25 and p = 2:

a. Single location testing, fixed number of total plots

(nP) of 100 (to correspond approximately with

simulation using historical field data; see next

section ‘Bootstrap resampling using historic

empirical data’) and

b. As (a), but with nP of 1000.

c. Extension of (b) with testing over two locations

for both p = 1.25 and p = 2, with nP of 2000 in

each of two locations to test 1600 genotype entries

(p = 1.25) and 1000 genotype entries (p = 2).

d. nP of 2000, distributed over one (p = 2) or two

(p = 1.25) locations. The replication level at

p = 1.25 to test 800 genotype entries (1000 plots

in each of two locations) is shown in Table 2.

Testing at p = 2 at one location (2000 plots)

allows 1000 genotypes in total to be tested.

For each scenario, data were generated for 10,000

simulations and analysed using a linear mixed model

in ASReml-R (Butler 2009) to obtain predictions of

the empirical genotypic values. The top performing

individuals resulting from the analyses, comprising 5,

10 or 20% of the total genotypes tested (s), were

selected based on the ranking of their empirical

genotype values. The selection response was consid-

ered to be the difference between the mean true

genotypic values of the s individuals and the mean of

the true genotypic values of the breeding population.

Therefore, truncation selection over a single cycle on a

single trait was applied and the selection intensity was

obtained directly from the proportion of genotypes

selected when p = 1.25 for scenarios a, b and c, and

p = 2 for scenario d. A relative genetic response to

selection (DG0) was also calculated for p-rep tested

genotypes (relative to the response when p = 2 so that

DG0 = RP/R, where RP is the p-rep selection response

and R is the fully replicated selection response) and

stored for each simulation run.

Simulation of genetic response: bootstrap

resampling using historic empirical data

The second approach was an empirically based

simulation that aimed to take into account the error

structure from historical field data and overlay a

formal p-rep design on the original replicated trial.
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The field data were based on early-stage C2 potato

yield trials from Pukekohe, grown between 1999 and

2012, and consisted of small, multiple a-Latinized
designs (80–100 genotypes per trial) of two replicates,

with each plot made up of 12 tubers grown in a six-by-

two row arrangement. The bootstrap simulation is

outlined as follows:

1. The replicated trial was analysed using a linear

mixed model in ASReml-R (Butler 2009), fol-

lowing the general form of the univariate model

outlined in the section Statistical analysis. Geno-

types were considered to be random effects and

the overall mean fitted as a fixed effect. The

residuals from this analysis were used to give the

spatial layout of the environmental effects for

subsequent p-rep analyses for each trial. The best

linear unbiased predictions of genotypic values

for tested genotypes were obtained from the

solutions of the mixed model equations using

the estimated variance parameters. The resulting

empirical genetic values (eGVs) were considered

to be the actual genetic values (aGVs) for the

simulations.

2. A minimal level of p-rep, Pmin, was elected to be

1.15, and therefore the standard p-rep trial size

was Ng 9 Pmin where Ng = number of genotypes

in the replicated trial. For example, a replicated

C2 trial of 160 plots would comprise 80 genotypes

and so a p-rep analysis of this particular trial

would be 80 9 1.15 = 92 plots in total for all

levels of partial replication. Levels of p-rep

(p) greater than 1.15 therefore required the

random elimination of some genotypes for each

analysis, as increasing replication would not allow

the full complement of genotypes to be assessed at

any one time over a fixed number of plots (see

Table 3).

3. For each level of p-rep, p, a trial was designed

using trial design software DiGGer (Coombes

2011) in statistical software R (R Development

Core Team 2012). The trial was designed to be

resolvable, for the complement of replicated

genotypes, in two dimensions (i.e. across row-

blocks and column-blocks). This design was

randomly located over the replicated C2 trial with

associated plot residuals (as initially computed in

step 1) allocated to the new layout. Genotypes

were then randomly allocated to the treatment

numbers of the trial design created. For computing

expedience, designs were used several times by

transformation, e.g., rotation, reflection.

4. For each plot, a simulated genetic value was

generated from the parametric bootstrap of the

genetic value (pbGV) for the genotype plus the

plot residual (environmental) effect for its loca-

tion in the trial (Fig. 4). The pbGV was obtained

by adding random noise taken from a normal

distribution with mean = 0 and standard

Table 1 Parameter values applied to the simulation of fully replicated and p-rep trials

Phenotypic variance ðr2p) Genetic variance ðr2g) Environmental variance ðr2e) Heritability Ratio: r2g=r
2
e

10 1 9 0.1 0.11

10 2 8 0.2 0.25

10 3 7 0.3 0.43

10 4 6 0.4 0.67

10 5 5 0.5 1.00

10 6 4 0.6 1.50

10 7 3 0.7 2.33

10 8 2 0.8 4.00

Table 2 Replication level for p = 1.25 over two locations,

fixed number of total plots = 2000 testing 800 genotypes

(scenario d)

Entry no. Location 1 Location 2 Total replicates

1:200 2 1 3

201:600 1 1 2

601:800 1 2 3

Plots 1000 1000
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deviation = SE to the aGV, where SE is the

standard error of the eGV as obtained from the

replicated C2 analysis in 1.

5. The data generated were then analysed in

ASReml-R (Butler 2009) following the general

form of the univariate linear mixed model as

described in section Statistical analysis. A

response to selection DG, and relative response

to selection, DG0 were calculated and stored for

each simulation run following the ‘parameter-

based simulation’ approach as outlined, a method

previously described by Piepho and Möhring

(2007). Only marketable yield, as the character

of most interest, was tested. There were a total of

5000 simulation runs for each p.

Results

Field trials

Variance components and broad-sense heritability

(H2) estimates for the p-rep trials LN-C2-11 and LN-

C2-12 are presented in Table 4. Estimates of narrow-

sense heritabilities were very similar (results not

shown). Spatial correlations were much higher for LN-

C2-12 than for LN-C2-11 for tuber yield. This may

have been due to soil compaction, which was observed

in some areas of the trial, causing spatial patchiness

because of periods of waterlogging (or as a result of

poorer root development because of soil panning)

during the growing season. A significant fixed covari-

ate (p\ 0.05) fitted for the analysis of tuber yield trait

in LN-C2-12 to account for the worst affected area

disappeared when spatial effects were fitted. This

contrasts with LN-C2-11, in which both a fixed

covariate (p\ 0.05) and spatial effects were fitted.

The waterlogging in this trial was only found in rows

one to two (Fig. 2) but there was a greater weed

burden throughout the trial which also may have

contributed to the spatial heterogeneity.

Correlations of genotypic values estimated (data

not shown) from univariate analysis for LN-C2-11 and

LN-C3-12 (between subsequent selection stages and

seasons), were high for the two traits considered (0.78

for tuber yield and 0.70 for fry score). These were very

similar to the correlations between EBVs (0.80 and

0.68 respectively), which are displayed in Fig. 5,

Table 3 Example of the expected number of total genotypes,

replicated genotypes and total plots available for p-rep

simulation at different levels of p-rep (p) using the empirical

data from an historic replicated trial (step 2) with a total of 160

plots and 80 genotypes. At a minimum p of 1.15, the total

number of plots available for simulation is 92. Higher levels of

p therefore require a random elimination of genotypes for each

set of simulated data

p (level of p-rep)

1.15 1.25 1.35 1.45 1.55 1.65 1.75 2.00

Total genotypes 80 74 68 63 59 56 53 46

Replicated genotypes 12 18 24 29 33 36 39 46

Total plots 92 92 92 92 92 92 92 92

Fig. 4 A simulated genetic value (pbGV) for a genotype in

each plot was generated (step 4) by adding the plot residual from

its particular location in the trial and the random noise, taken

from a normal distribution with mean = 0 and the standard

deviation = the standard error of the empirical genetic value

(eGV), to the actual genetic value (aGV). The eGVs (= aGVs)

and plot residuals were obtained from the replicated trial

analysis (step 1)

221 Page 8 of 15 Euphytica (2017) 213:221

123



illustrating the strong relationship between stages LN-

C2-11 and LN-C3-12. Correlations between genotypic

values for C2 and C3 grown in the same year (LN-C2-

12, LN-C3-12) were at least as high (0.78 for tuber

yield) or higher (0.82 for fry score) than correlations

between C2 and C3 grown in different years (LN-C2-

11, LN-C3-12). Differences may have been due to

both seasonal effects and carry-over, or ‘maternal’,

effects for tuber yield, from growing test plots at the

C2 stage with tubers selected from single plants for

each genotype. Trial-to-trial genetic correlations esti-

mated from multivariate FA analysis using MET data

(C2 and C3 trials at Lincoln and C4 trials at both

Lincoln and Pukekohe) found consistently high cor-

relations for tuber yield (mostly[0.8) and a greater

range for fry score (0.57 to 0.93). These are shown in

Fig. 6.

Parameter and empirical-based simulations

At a selection proportion (s) of 5% with 100 tested

genotypes at a single location (scenario a), parametric-

based simulation showed that the relative selection

response was close to unity when h2 (orH2) &0.4–0.5

(Fig. 7a). The relative response reduced slightly at all

levels of s (5, 10 and 20%) with 1000 tested genotypes

(Fig. 7b). There was some evidence to suggest that

relative gain was overestimated with small sample

sizes and at low heritabilities, possibly because of

difficulties in estimating variance components. At

s = 20, there was no advantage in replicating trials.

When testing over two locations with both full

replication and p-rep (scenario c) at a selection

proportion of 5%, relative response was at unity at a

heritability of just over 0.30 when the trial-to-trial

genetic correlation was high (0.80) and just over 0.40

when the genetic correlation was low (Fig. 7c). This

reduction in heritability when Rp/R = 1 compared

with scenario a is expected, given that some genotypes

were replicated three times (four times when p = 2)

over the two locations. The relative responses to

selection for all correlations did not surpass 1.10 and

tended to converge as heritability approached 0.80.

Relative response easily offset the reduction in the

number of p-rep genotypes tested over two locations,

even at very low heritabilities (Fig. 7d). The advan-

tage of testing over two locations when trial-to-trial

correlations are high was generally small however,

with the relative response trending towards unity as

heritability increases, although Rp/R was greater than

1 for all heritabilities tested.

Table 5 shows an example of a bootstrap simula-

tion run (5000 samples) at all levels of tested p-rep

using historical field data, with a target number of test

plots set at 92. The total number of genotypes tested at

p = 1.25 was approximately 75, which reduced to 46

at p = 2. Trials presented in Table 6 are a represen-

tative set of trials, with regard to heritabilities, from

years 1999 to 2012 for tuber yield, with the lowest and

highest heritabilities found in trials C2-06A and C2-

99D/C2-00B respectively. For trial C2-12E,

H2 = 0.46 and the relative response was close to one

at s = 5, which was similar to the result from

parametric-based simulation (Fig. 7a). For trial C2-

06B, H2 = 0.66 and the relative response was 1.35 at

s = 0.20, which was inflated well above that expected,

given the results of the parametric-based simulation at

this heritability (Fig. 7a). There were few Pukekohe

Table 4 Summary of variance component and heritability (H2) estimates from p-rep potato trials LN-C2-11 (upper values) and LN-

C2-12 (lower values)

Trait r2g r2r r2rb qrow qcol r2e H2 (se)

Tuber (marketable) yield (kg) 7.8 – 0.2 0.30 – 1.4 0.83 (0.04)

4.5 – – 0.76 0.65 1.9 0.70 (0.06)

Fry score 2.4 0.05 – – – 0.58 0.79 (0.05)

2.7 – 0.03 – – 0.68 0.79 (0.05)

r2g is the genetic variance; r2r and r2rb are the replicate and block/replicate variances, qrow and qcol are the spatial correlation

parameters; r2e is the residual error variance; H
2 is the estimate of the (broad-sense) heritability—the proportion of genetic variance to

the phenotypic variance, and SE is the standard error of the heritability estimate from Taylor series expansion (Lynch and Walsh

1998)
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Fig. 5 Correlation of

empirical breeding values

(EBVs) between p-rep (LN-

C2-11) and fully replicated

(LN-C3-12) field trials for;

a tuber (marketable) yield

and; b tuber fry score.

Graphs show the line of

unity

Fig. 6 Trial-to-trial genetic correlation estimates from factor analytic models for tuber (marketable) yield and tuber fry score. (Color

figure online)
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Fig. 7 Simulation of the relative response to selection (Rp/R) at

increasing heritabilities (where Rp is the p-rep selection

response and R is the fully replicated selection response);

where a testing in one location, 100 total plots and 5, 10 and 20%
proportion selected (s); b as a but with 1000 total plots; c testing
in two locations with 2000 total plots (in each location) with

genetic correlations (r) between locations of 0.2, 0.5 and 0.8 and

s = 5; d testing in one location (full replication), 1000

genotypes, 2000 total plots and s = 5, or testing in two locations

(p-rep), 800 genotypes and 2000 total plots (1000 in each

location), s = 5 and genetic correlations as in c

Table 5 Mean values generated by p-rep bootstrap simulation

of tuber (marketable) yield, based on a C2 stage potato trial

grown at Pukekohe. The replicated trial consisted of 160 plots

in total and 80 genotypes. The target number of plots for

simulation was 92. Actual p is the level of p-rep obtained in the

simulation

Target p (level of p-rep)

1.15 1.25 1.35 1.45 1.55 1.65 1.75 2.00

Actual p 1.15 1.24 1.35 1.47 1.57 1.64 1.76 2.00

Total genotypes 78.7 74.5 69.0 64.1 59.6 56.0 53.5 46.2

Replicated genotypes 12.1 18.3 24.5 29.9 33.8 36.1 40.5 46.2

Plots 93.0 92.7 93.6 93.9 93.4 92.1 93.9 92.4

Rows 16.0 16.2 16.2 16.3 16.1 15.0 14.7 11.6

Columns 5.9 5.9 5.9 5.9 6.0 6.3 6.5 8.0

Euphytica (2017) 213:221 Page 11 of 15 221

123



trials with heritabilities of less than 0.4 for tuber yield

with records available, and so there was limited

opportunity to test the empirical simulations at low

heritabilities. An exception was the C2-06A trial,

where the heritability of tuber yield was estimated to

be 0.25. At p-rep = 1.25, simulation of this trial gave

a relative selection response of 0.93 for s = 5 and 1.05

for s = 10. From parametric-based simulation results,

unity of relative selection response (Rp/R = 1) for

s = 10 was expected at an approximate heritability of

0.3. Again, the relative selection response appeared to

be inflated above expectation, when s = 20.

Discussion

Reducing the degree of clonal replication within field

trials is motivated by two main factors: i) the relatively

lowmultiplication rate of potato tubers, i.e., a shortage

of planting material in the early stages of breeding

programmes and therefore the time lag associated with

entering candidates into formal trial evaluation

including MET testing, and ii) a desire to increase

the number of candidates tested (when the total

number of plots is fixed and it is assumed that the

phenotyping of extra candidates is not constrained).

The results are presented in terms of genetic gain,

whilst acknowledging that the motives and constraints

of implementing a selection scheme will vary with the

specific programme.

Empirical and simulated data

For the potato traits presented, the results using both

empirical and simulated data indicate that increased

genetic gain could be achieved in a potato breeding

programme by applying p-rep trial evaluation at the

early stages of selection. Concordance of genetic

values between subsequent clonal stages, after selec-

tion from p-rep trials, were mostly high to moderately

high for important economic traits, marketable tuber

yield and fry quality. In Scotland, work by Caligari

et al. (1986) found a correlation coefficient of

phenotypic performance for total tuber yield between

the second (C2) and third (C3) clonal stages of 0.52.

These were tested over two locations and there was no

significant clone 9 location interaction. A correlation

coefficient of 0.78 (genotypic value) for marketable tu-

ber yield at a single location was found in the present

study.

Given the heritabilities reported, previous work

based on order statistics and known selection formulae

also indicate that the expected genetic gain at moderate

to high heritabilities may be greater at a single location

by planting fewer replicated entries (Bos 1983; Gauch

and Zobel 1996). This moderates the selection accu-

racy but the trade-off is in allowing more genotypes to

be tested (Bos 1983). From Fig. 7a, b the relative

selection response was close to unity when h2 (or

H2) &0.4–0.5, which was similar to that predicted for

unreplicated testing using a deterministic approach by

Table 6 Summary of p-rep bootstrap simulation outcomes using empirical data, Pukekohe early stage trials, years 1999–2012, for

tuber (marketable) yield (t ha-1) at p-rep = 1.25

Trial Ng H2 DG (5) DG0 (5) DG (10) DG0 (10) DG (20) DG0(20)

C2-99B 80 0.56 10.02 1.01 8.53 1.08 6.81 1.21

C2-99D 80 0.71 28.01 1.16 21.75 1.22 16.08 1.34

C2-00A 80 0.69 18.37 1.04 16.03 1.11 13.00 1.23

C2-00B 80 0.71 20.54 1.02 16.96 1.08 13.37 1.20

C2-06A 90 0.25 2.81 0.93 2.66 1.05 2.26 1.17

C2-06B 90 0.66 15.87 1.07 13.93 1.17 11.18 1.35

C2-07B 80 0.57 6.68 1.02 5.75 1.08 4.52 1.23

C2-07C 80 0.64 8.47 1.02 7.58 1.07 6.29 1.20

C2-12D 98 0.57 13.70 1.04 11.68 1.10 9.12 1.24

C2-12E 91 0.46 7.76 1.00 6.88 1.04 5.60 1.15

Ng number of tested genotypes at p = 1.25, H2 is the heritability of the replicated trial, DG(s) is the genetic gain and DG0(s) is the
relative genetic gain and s is the % proportion selected
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Bos (1983). The recommendations of Gauch and Zobel

(1996) were more conservative, suggesting that

unreplicated testing was suitable when h2 = 0.6 and

greater, when the total number of plots was 100. At

1000 plots, two replicates were favoured when h2 was

0.75, the maximum shown. This work accounted for

the extra noise generated by testing more plots, so that

increasing the number of genotypes tested had the

desirable effect of increasing the number of superior

genotypes, but also the undesirable consequence of

adding more noise (inferior genotypes). There was

only a small indication of this trade-off in the present

study, as the relative response reduced slightly at all

levels of swith 1000 test plots (Fig. 7b) comparedwith

100 test plots (Fig. 7a). Cullis et al. (2006) and Piepho

and Möhring (2007) have emphasised that under more

complex analysis, for example when data are unbal-

anced and genotypic effects are correlated, it is not

appropriate to apply the standard measures of heri-

tability to compute a response to selection. An

alternative approach, proposed by Piepho andMöhring

(2007), measured selection response directly using a

simulation-based method, thus avoiding the necessity

to define the heritability or to use an altogether

inappropriate measure of heritability. This simulation

approach was also applied in the present study, based

on empirical data from clonal stage 2 yield trials.

Results from parameter-based simulations found an

increase in the expected response to selection at the

intensities that are typically employed in the early

stages of a clonal selection scheme when testing at a

single location in p-rep trials.

Early-stage testing in multiple locations

The results from simulation also showed that selection

over two locations in p-rep trials may be particularly

beneficial compared with selection over one location

in a fully replicated trial, when locations are weighted

equally in a selection index, i.e., selection is for broad

adaptation. The advantages, particularly for low trial-

to-trial correlations, are clearly seen in Fig. 7d. Only

positive correlations between locations were consid-

ered in this study, as negative correlations have not

been found in previous analyses of PFR breeding

scheme MET data for tuber yield traits (Paget et al.

2015b). Negative correlations indicate a greater

importance of qualitative G 9 E interactions, and

that separate selection schemes targeting specific

adaptations in localised regions may be required, e.g.

Atlin et al. (2000), Windhausen et al. (2012).

For METs, the precision of across-trial compar-

isons is compromised in the presence of G 9 E

effects. The magnitude of estimated average G 9 E

variances for yield in a number of different crops has

previously been reported (Talbot 1984). For potato,

this was found to be greater than the within-trial plot

variances, and so efforts expended on maximising

selection precision by replication at an individual trial

site may be wasted (Kempton and Gleeson 1997). At

low heritabilities, the advantage of extending p-rep

testing to two locations is maintained over full

replication at a single location (scenario d), particu-

larly for low trial-to-trial correlations (Fig. 7d) and

despite a reduction in the number of candidates tested

with a fixed number of total plots available. This is a

more realistic scenario than scenario c at the C2 stage

of selection, because of the shortage of available

planting material. The advantage of testing over two

locations when trial-to-trial genetic correlations are

high is not so obvious however, with the relative

response trending towards unity as heritability

increased. Managing trials over two or more locations

may become more difficult to justify in this case, with

the difference in gain (which was less than 1%) having

to be measured against the extra costs incurred, but

this is beyond the scope of the present study.

Unreplicated or p-rep trials offer a means to increase

the number of test genotypes over a fixed number of

plots or, alternatively, a means to reduce the number of

plots to test an equivalent number of genotypes which

may maximise gain per unit cost (e.g. Stendal and

Casler 2006). With molecular information, Moreau

et al. (2000) found that unreplicated trials were

optimal for marker-assisted selection as well as

phenotypic selection when traits were sensitive to

G 9 E effects. Lorenz (2013) simulated resource

allocation under genomic selection and favoured

increasing population size rather than replication.

For tuber yield, previous analyses of PFR early stage

trials at Pukekohe have shown that heritabilities are

generally high and that genetic correlations between

adjacent seasons are also usually high ([0.70). This

may not be the case for all traits, as fry quality has been

reported to show significant G 9 E interaction effects

(Affleck et al. 2008), which was similarly found by

Hayes and Thill (2003), who recommended that
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genotypes should be tested for fry quality over

multiple locations. Genetic parameters obtained for

fry score in the present study, including trial-to-trial

genetic correlations estimated from a FA model using

MET data, indicated that evaluation in p-rep trials

would be appropriate. Moehring et al. (2014) demon-

strated that unreplicated and augmented p-rep trials

outperformed augmented and fully replicated trials in

MET evaluation of triticale and maize. They reported

that p-rep trials were slightly inferior to unreplicated

trials but had advantages including the possibility of

single trial analysis. Like Talbot (1984), allocating

replicates to multiple environments and decreasing the

number of replicates in each environment was recom-

mended. In potato, McCann et al. (2012) found that

maximising replication of smaller plots over several

locations and/or years rather than increasing replica-

tion at a single location improved the precision of

genotype differences for several tuber quality traits

including fry colour, sugar content and dry matter.

Haynes et al. (2012) recommended the distribution of

tubers to multiple test locations in the eastern USA at

the early selection stages as an approach to select

parents that produce more broadly-adapted progenies.

Conclusions

P-rep trials provide an opportunity to increase the

number of genotypes that are tested in a single site and

also allow an extension of trials to multiple locations

for MET testing at an earlier stage than is currently

practised. Based on empirical trials and simulation,

results indicate that p-rep trials in a potato improve-

ment programme will increase the rate of genetic gain

for tuber yield and quality components. Further

advantages are possible if material can be distributed

across trial sites, i.e., multiple locations, at an earlier

stage than is possible with full replication. It is

concluded that full replication at the early stages in a

selection programme may be sub-optimal and the use

of p-rep designs should be considered as a means to

improve the selection efficiency of potato breeding.
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