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Analysis of Longitudinal Data from
Progeny Tests: Some Multivariate
Approaches

Luis A. Apiolaza and Dorian J. Garrick

ABSTRACT.  Longitudinal data arise when trees are repeatedly assessed over time. The degree of
genetic control of tree performance typically changes over time, creating relationships between
breeding values at different ages. Longitudinal data allow modeling the changes of heritability and
genetic correlation with age. This article presents a tree model (i.e., a model that explicitly includes
a term for additive genetic effects of individual trees) for the analysis of longitudinal data from a
multivariate perspective. The additive genetic covariance matrix for several ages can be expressed in
terms of a correlation matrix pre- and post-multiplied by a diagonal matrix of standard deviations.
Several models to represent this correlation matrix (unstructured, banded correlations, autoregressive,
full-fit and reduced-fit random regression, repeatability, and uncorrelated) are presented, and the
relationships among them explained. Kirkpatrick’s alternative approach for the analysis of longitudinal
data using covariance functions is described, and its similarities with the other models discussed in
this article are detailed. The use of Akaike’s information criterion for model selection considering
likelihood and number of parameters is detailed. All models are illustrated through the analysis of
weighed basic wood density (in kg/m3) at four ages (5, 10, 15, and 20 yr) from radiata pine increment
cores. FOR. SCI. 47(2):129–140.
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T REE BREEDING HAS A MULTIVARIATE NATURE. In most
breeding programs, the selection criteria involve
two or more characteristics. Apart from the obvious

use when dealing with different traits (e.g., growth and wood
properties), a multivariate approach can be utilized with
different expressions of the same trait. Hence, problems of a
seemingly univariate structure can be fully exploited in a
multivariate framework. For example, growth rate assessed
in two different environments can be modeled as if controlled
by different genes, and treated as a multivariate analysis
(Falconer 1952). Here the genetic correlation between the
traits is a measure of genotype by environment interaction.
Another application, which we study here, is in the analysis
of longitudinal data that arise when trees are repeatedly

assessed at several points in time (e.g., basic wood density at
ages 5, 10, and 15). Thus, expressions of the trait at different
times are considered different variables.

We make a distinction between longitudinal data and
repeated measures because the latter term not only in-
cludes different times (longitudinal data) but also multiple
assessments of morphological traits (e.g., lengths of right
and left wings of a bird) or measures under different
conditions (Cnaan et al. 1997). Longitudinal data can be
considered a particular form of multivariate data—be-
cause the “same trait” is measured at each time, there is an
underlying continuum (time) and the sequential nature of
measurement creates patterns of variation (Hand and
Crowder 1996).
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Longitudinal data allow modeling the changes of herita-
bility and genetic correlations with age. Therefore, data from
multiple assessments may be integrated in the prediction of
breeding values and this allows the evaluation time for early
selection to be optimized (Burdon 1989). Longitudinal data
are a frequent feature of tree breeding programs; however,
their analysis has often been reduced to a univariate ap-
proach. There are examples of multivariate modeling of
longitudinal data in forest mensuration (e.g., Gregoire et al.
1995). Multivariate applications in tree breeding are scarce
and have typically considered only a full unstructured ap-
proach (e.g., Wei and Borralho 1998). The only exception we
are aware of is Magnussen and Kremer (1993), fitting growth
models to individual trees and Apiolaza et al. (2000), com-
paring different parameterizations of the additive genetic
covariance matrices. Although the use of best unbiased linear
prediction and tree models (Henderson 1984) is increasingly
popular (e.g., Borralho 1995), there is no unified presentation
of its theoretical background and the link between univariate
and multivariate analyses in a tree breeding context. Further-
more, simple models like covariance functions, well known
in evolutionary genetics and animal breeding, have received
little attention in tree breeding, and their relationship with
multivariate analysis has not yet been discussed.

This article provides a unified presentation of multivariate
analysis with longitudinal data from progeny trials (i.e., with
a genetic structure) using a tree model. A univariate tree
model is detailed and then extended to multivariate form. We
explain the concept of covariance structures and show the
relationships among these structures and the corresponding
predicted breeding values. Several statistical models to deal
with covariance structures are specified, the relationship
between full multivariate analysis and random regression
models is demonstrated, and model selection techniques are
presented. An alternative approach, covariance functions, is
also discussed. An example is developed comparing the
different models.

Univariate Analysis

In a typical univariate analysis the scalar phenotypic
observation yi on individual i is expressed in the so-called tree
model (see Borralho 1995) as a function of fixed effects,
additive genetic value of the tree (ai) and a residual effect (ei):

yi = xi′ b + ai + ei (1)

where y is a vector of observations on one trait, b = [b1 b2 …
bf]′ is the vector of fixed effects (e.g., overall mean, site, etc.)
and xi′ = [1 …] is a row vector containing 1’s and 0’s linking
observations to the fixed effects. This notation is for the
observation of a single individual. Considering all N trees
under analysis, and extending the matrix notation, Equation
(1) becomes:

y = X b + Z a + e (2)

where b is the vector of fixed effects (as defined before),
a = [a1 a2 … aN]′  is the vector of random additive genetic
values, and e = [e1 e2 … eN]′  is the vector of random
residuals. The incidence matrices X (obtained by stacking

xi′  for all trees) and Z links observations to b and a,
respectively. The vector of expected values and the disper-
sion matrices are defined by:

E[y] = X b

Var Var

and Var

[ ] , [ ]

[ ]

a G A e R I

y ZGZ R

= = = =
= ′ +

N a eσ σ2 2

(3)

where AN is the numerator relationship matrix, which de-
scribes the additive genetic relationship among individuals
(see Mrode 1996, Chapter 2, for a detailed explanation). In
addition, I is an identity matrix, σa

2  is the additive genetic
variance, and σe

2  is the error variance. Random effects a and
e are assumed to be uncorrelated.

The analysis of progeny tests normally involves two steps:
first the estimation of variance components and second the
prediction of breeding values for the individuals, using the
variance components estimated in the first step. Restricted
maximum likelihood (REML, Patterson and Thompson 1971)
is being increasingly used for variance components estima-
tion in tree breeding (e.g., Huber et al. 1994, Dieters et al.
1995), although there are now a few applications with a
Bayesian approach using Monte Carlo Markov Chains (e.g.,
Soria et al. 1997).

Assuming that y, a, and e follow a multivariate normal
distribution, and provided G and R are positive definite, best
linear unbiased predictions (BLUP),  (Henderson 1984) of
the breeding values of the individuals are calculated using
Henderson’s mixed model equations (Henderson 1984):

′ ′
′ ′ +

























= ′
′













− −

− − −

−

−
X R X X R Z

Z R X Z R Z G

b

a
X R y

Z R y

1 1

1 1 1

1

1 (4)

where G and R are functions of σa
2  and σe

2  respectively [see
Equation (3)]. In practice, estimates Ĝ and R̂ are used in
place of unknown parameters, so the predicted breeding
values are in fact approximations of BLUP.

To obtain REML estimates of variance components the
log-likelihood (Log L) function is maximized with respect to
σa

2 and σe
2 , subject to the constraints that these parameters

are within the parameter space (i.e., nonnegative and less or
equal to the total phenotypic variance):

Log L

con

 =

/  [ + | | + | | + | | + ] − ′1 2 log log logG R C y Py (5)

where con is a constant, G and R are as from Equation (3), C is
the coefficient matrix of Equation (4), P is the projection matrix
V–1 – V–1 X (X′ V–1 X)¯ X′ V–1, and (X′ V–1 X)¯ represents a
generalized inverse of (X′ V–1 X). The matrix P absorbs the fixed
effects and accounts for information about V.

Multivariate Analysis

The steps involved in a multivariate analysis are similar to
the univariate case. Consider now a vector yi = [yi1 yi2 …
yim]′  representing m observations (either different traits or
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repeated measurements) on individual i. This vector of phe-
notypic observations can be expressed in terms of genetic and
environmental components using:

y X b Z a ei i i i i= +   + (6)

where b = [b′trait1 b′trait2 … b′traitm] ′ is the vector of fixed
effects (which can be different for each trait), ai = [ai1 ai2 …
aim] ′ is the vector of random additive genetic effects and ei =
[ei1 ei2 … eim] ′ is the vector of random residuals. The
incidence matrices have the same function as in the univariate
case, and Xi and Zi have one row for each observation in yi.
Note the use of matrix notation for additive genetic effects
and residuals already at the individual level, and the similar-
ity to Equation (2) (but for the subscript i).

The expected value and dispersion for a noninbred indi-
vidual are defined by:

E[yi] = Xi b

Var[ ] = , Var[ ] =

 and 

Var[ ] = +

a G e R

y Z G Z R

i i

i i i

0 0

0 0
′

(7)

In the multivariate approach, G0 and R0 represent the m × m
additive genetic and residuals covariance matrices between the
observations, respectively. Their typical elements for traits (or
measurements) j and k are σa jk

 and σe jk
. Again, random effects

ai and ei are assumed uncorrelated. This model can be easily
expanded to include more random effects such as block and plot
effects (see, for example, Apiolaza et al. 2000).

This multiple-trait model for one individual is extended to
the N individuals in the progeny test using Equation (2), but
now y = [y1′ y2′ … yN′]′, a = [a1′  a2′ … aN′]′ and e = [e1′ e2′
… eN′]′. In addition, X = [X1′ X2′ … XN′]′ and Z Z= ∑⊕ i ,
where ∑⊕  represents direct sum operation. Consequently, G
= AN⊗ G0 and R R= ∑⊕ i , where ⊗  denotes direct product
[see Appendix 1 and Searle 1982 (Chapter 10) for a detailed
description of ∑⊕  and ⊗  operations] and Ri is the residual
covariance matrix for each individual. Hence, the expected
value and dispersion matrices are:

E[y] = X b

Var Var

and 

Var[ ]

[ ] , [ ]a G A G R R

y ZGZ R

= = ⊗ = = ∑

= ′ +

⊕N i0 e

(8)

Once the model is defined, the analysis of the multivariate
expression of Equations (4) and (5) is developed in ways
similar to the univariate estimation of variance parameters
and to predict breeding values.

Analysis of Longitudinal Data:
Covariance Structures

The use of multivariate models with unstructured covari-
ance matrices (i.e., not assuming any patterns) for the analy-

sis of m repeated measurements is an appropriate, but not
necessarily the best, option. Each of these covariance matri-
ces involves the estimation of m(m + 1)/2 covariance compo-
nents. In comparison to a univariate analysis, the amount of
data on each subject increases by m, but the number of
covariance parameters to estimate increases by m(m + 1)/2.
Therefore the information available to estimate each param-
eter is in some sense reduced, as may be the “quality” of the
estimates. Modeling the covariance structures reduces the
number of parameters to estimate and can provide explana-
tion for patterns of observed correlation among the longitu-
dinal data.

Covariance matrices (M) can generally be expressed as a
symmetric correlation matrix (C) with typical element rjk
pre- and post-multiplied by a diagonal matrix (S) containing
the square root of the variance components for each trait
(measure). Hence:

M = S C S (9)
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This notation simplifies the explanation of the structures
used for modeling the covariance matrices. We typically
allow heterogeneous variances in time, so S is a diagonal
matrix with all diagonal elements different. In case of stable
processes, or stabilized through transformation to a homoge-
neous variance, S = I σ, a diagonal with identical elements.
Below we provide a list of some common, but not exhaustive,
structures for C, where scalars denoted with different letters
represent different correlations. Each structure is followed by
the relationship between successive predicted breeding val-
ues. While structures can be applied to G and R, in this article
we emphasize modeling the additive genetic covariance
matrix, while keeping the residuals matrix unstructured. The
only exceptions are the repeatability and uncorrelated mod-
els. All examples consider four measurements.

Unstructured (US)
The unstructured model can be expressed as M = S CUS S,

where CUS have no restrictions except for being positive
definite and with elements between –1 and 1. This is the
choice when working with different variables. Its main prob-
lem with longitudinal data is the risk of overparameterization,
with poorly estimated parameters and maybe unnecessary
computational requirements.

CUS

a b c

a d e

b d f

c e f

=





















1

1

1

1

(11)

The breeding value of individual i observed at time j
(aij) is a function of genes involved in expression at time
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j – k (ai j – k) plus the effect of genes acting in the new
measurement (α j), which are considered independent of
the past measurement:

aij = ρjk ai j–k + αj (12)

where ρjk is the additive genetic correlation between mea-
sures j and k, and j – k ≥ 0.

Banded Correlations (BC)
The banded correlations model accommodates the exist-

ence of identical correlations for measurements with the
same time between expressions (lag). Thus M = S CBC S,
with {a, d, f}→g, {b, e}→h, and {c}→i respectively from
Equation (11) (CUS). If the lag between all measures is the
same, the correlation matrix presents bands with the same
value [see Equation (13)].

CBC

g h i

g g h

h g g

i h g

=





















1

1

1

1

(13)

The relationship between successive breeding values is
similar to Equation (12), but ρ is the same for all observations
separated by a lag k:

aij = ρk ai j–k + αj (14)

This assumption may not be applicable across different
growth stages, where development in 1 yr of, say, early
growth can be very different from that of 1 yr in mature
growth (due to ontogenetic effects).

Autoregressive (AR)
Rather than using a different correlation for each lag, the

autoregressive model postulates a mechanism where the
correlation between measurements j and k is r|j–k|. In this
model M = S CAR S, further reducing to 1 the number of
covariances to estimate.
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t t t t t t

t t t t t t

t t t t t t

t t t t t t

a a a

a a a

a a a

a a a

=





















− − −

− − −

− − −

− − −

1

1

1

1

2 1 3 1 4 1

2 1 3 2 4 2

3 1 3 2 4 3

4 1 4 2 4 3

(15)

Again, the breeding value of individual i observed on time
j (aij) is a function of genes acting at time j–1 (ai j–1) plus
genes acting on the new measurement (α j):

a aij ij j =  ρ α− +1 (16)

if the correlation (ρ) is a function of a unique value and the lag
between the measurements, the relationship between succes-
sive breeding values for individual i is:

  

a a

a a

a a

ij ij j

ij ij j

ij k ij k j k

− −

− − −

− + − − +

1 2 1

2 3 2

1 1

= +

= +  

=  +

-ρ α

ρ α

ρ α
M (17)

and substituting every breeding value of Equation (17) in the
preceding one we obtain:

a aij
j k

ij k j= + ′−
−ρ α| | (18)

where α j
′  represents genes acting on measurement j plus a

series of lag effects from previous innovation terms.
The autoregression coefficient can have a power formula-

tion as ρ = e–k lag (Diggle 1988) allowing for analysis with
unequally spaced observations. This model is appropriate for
smooth changes of genetic correlations with time, and the
presence of smaller correlations at the initial stages of a trial
can sometimes be modeled changing the units of the time
scale (e.g., to natural logarithm or square root). A generaliza-
tion of the autoregressive model is ante-dependence, where
the breeding value is a function of n previous breeding values
(Gabriel 1962).

Repeatability (RE)
This model considers longitudinal data as expressions of

the same trait (under control of the same genes); that is, a
genetic correlation of 1 is assumed, with homogeneous
heritability on time, and equal environmental correlation
between all pairs of records. Thus, G J0

2= σa
 and

R I J0
2= +σ ρe ( ) , where J is a square matrix with all elements

equal to 1 and ρ/(1 + ρ) is the correlation between residuals.
Therefore M = S CRE S, with S = I σa and CRE = J.

CRE =





















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(19)

As all rows are identical, G0 is singular, impeding the use
of mixed model equations [Equation (4)] in its normal form.
A solution for this problem is the regularly used alternative
“univariate” representation of the model:

y = X b + Z a + W h + e (20)

that is, an extension of Equation (2) (univariate analysis)
where h = [h1 h2 … hN]′ is a vector of “permanent environ-
mental effects,” which takes into account the residual cova-
riance between measurements, and W an incidence matrix.
Additive genetic variance ( )G A= N aσ2  and residuals vari-
ance ( )R I= σe

2  are like in the univariate case, while pheno-
typic variance now includes permanent environment vari-
ance:

E[y] = X b

Var  and Var[ ] [ ]h H I y ZGZ WHW R= = = ′ + ′ +σh
2 (21)
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A common problem is scale difference between measures.
However, this difference may be avoided using a transforma-
tion for stabilizing variance (e.g., logarithmic, Box-Cox,
etc.). Nevertheless, with tree breeding experiments spanning
several years (even decades), the equal correlation assump-
tions are sometimes naïve. In spite of this, the RE model
could be useful for some short-term experiments.

Uncorrelated (UC)
The uncorrelated model assumes that there is no genetic

and no residual association between successive observations.
Thus M = S CUC S, where CUC = I, an identity matrix. This
is equivalent to univariate analysis by age, allowing the
calculation of heritabilities but not of correlations between
measures.

CUC =





















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(22)

This model may be adequate when all trees are measured
at all times, but it is not appropriate in the presence of
selection (thinnings, mortality, etc.) whereby remaining indi-
viduals are a selected sample based on performance at earlier
ages.

Random Regressions (RRf and RRr)
The phenotypic trajectory of a trait (dependent on time)

can be expressed through a mathematical function tractable
in a mixed linear model framework, for example, using
polynomial regression, growth models, or cubic splines. A
general representation for the measurements of individual i
might be:

y t t tb a ei ii i
= + + +f f f( ) ( ) ( ) ε (23)

where fb t( ) , fa t
i
( ) and fe t

i
( )  represent possibly different

functions modeling fixed effects, additive genetic effects and
residuals respectively; and εi is an error term. Functions can
be applied to all components of the phenotype (e.g., fixed
effects, tree, and residuals) or to specific elements (e.g., tree
only). Again, the emphasis is on modeling the additive
genetic covariance matrix (G), with random regressions used
for ai while other terms are considered unstructured and the
subindex for ƒ(t) is dropped. If ai = ƒ(t) with t a vector of
times, rather than estimating one breeding value for each
assessment, the coefficients of a function that models the
trajectory are estimated. Consider, for purposes of illustra-
tion, an orthogonal polynomial function to model the breed-
ing value of individual i on time j (aij):

a f t z z z zij j i j i j i j ni nj= = + + +…+( ) λ λ λ λ0 0 1 1 2 2 (24)

where λki are the random regression coefficients, zkj is the kth
orthogonal polynomial evaluated at age j, and n ≤ m – 1. Thus,
all breeding values of individual i can be represented as:

ai = ƒ(t) = Qi λi (25)

where λi = [λ0i λ1i … λni]′ and Qi is an incidence matrix of
form:

  

Q i

n

n

m m nm

z z z

z z z

z z z
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01 11 1

02 12 2

0 1

L

L

M M O M

L

(26)

Therefore, Equation (6) can be represented as:

yi = Xi b + Qi λi + ei (27)

with

Var[Qi λi] = Qi Λ0 Qi′ (28)

where Λ0 is the covariance matrix of the random coeffi-
cients (λ i). Because different regression coefficients are
calculated for every individual (and these coefficients are
considered as random effects), this model is called the
“random regressions model.” When the polynomial is of
maximum degree (m – 1), there is a full fit (RRf), that is,
the function ƒ(t) goes through all the points/measure-
ments. In this case, the estimates using ƒ(t) are equivalent
to those using a full multivariate approach (see below). A
polynomial of order lower than m – 1 generates a reduced
fit (RRr) and, in fact, is smoothing the covariance matrix.

Including polynomials evaluated at additional ages in Qi,
within the age range used to generate the function, interpo-
lates the appropriate covariances. Extrapolating covariances
outside the range used for constructing the function is pos-
sible; however, there are no provisions in the method to
ensure reliable prediction of the covariances.

Further details of these models can be found in Laird
and Ware (1982, RR); Quaas et al. (1984 p. 34, RE);
Jennrich and Schluchter (1986, US, BC, AR, RR, and UC);
Louis (1988, RR); Diggle et al. (1994, RR); Everitt (1995,
RR); Hand and Crowder (1996, US, AR, and RR); and Cnaan
et al. (1997, RR). Diggle et al. (1994, Chapter 5) and Hand
and Crowder (1996, Chapter 6) provide an extensive treat-
ment of the topic.

Relationship Between Unstructured and
Random Regression Models

Two linear models, m1 and m2, are considered equivalent
when their expected values and variances are identical
(Henderson 1984, p. 6):

E[m1] = E[m2]

Var[m1] = Var[m2] (29)

The equivalency between the US and full fit RR models
and the relationship between US and reduced fit RR models
will be illustrated with an example. Suppose a progeny test
was assessed four times (see Figure 1). We present a set of
observations for a generic individual according to the model
in 6 and 7. We have no particular interest in the fixed effects,
which will be represented as Xi b.
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Using a US multivariate approach [i.e., model Equations
(6) and (11), where ai is the vector of additive values at
different measurements times], we get:

yi = Xi b + Zi ai + ei, or
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(30)

Using a full fit polynomial regression (RRf) [i.e., model
Equation (27), where λi represents the regression coeffi-
cients, to model the additive genetic part] we have:

yi = Xi b + Qi λi + ei, or
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Because a polynomial of degree n – 1 will pass through all
n observations (Neter and Wasserman 1974, p. 276), the
product Qi λi on Equation (31) is:

λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ λ

0 01 1 11 2 21 3 31 1

0 02 1 12 2 22 3 32 2

0 03 1 13 2 23 3 33 3

0 04 1 14 2 24 3 34 4
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+ + + =
+ + + =
+ + + =
+ + + =

(32)

that is also the result of the product Zi ai in Equation (30).
If Zi ai, and Qi λ i are identical, so are their variances. The
expected values for both Equations (30) and (31) are Xi b.
Thus,

E[US] = E[RRf] = Xi b

Var[US] = Var[RRf] = Zi G0 Zi′ + R0 = Qi Λ0 Qi′ + R0
(33)

and the models are equivalent. Moreover, random regression
coefficients can be estimated from the US model as
λ i i i i i i= =− −Q Z a Q a1 1 .

Using a reduced fit, for example a quadratic polynomial
(Figure 1), we have:
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Because the reduced fit polynomial will not in general fit
the four observations perfectly we have that:

λ λ λ ε
λ λ λ ε
λ λ λ ε
λ λ λ ε

0 01 1 11 2 21 1 1

0 02 1 12 2 22 2 2

0 03 1 13 2 23 3 3

0 04 1 14 2 24 4 4

i i i i i

i i i i i

i i i i i

i i i i i

z z z a
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z z z a

z z z a

+ + + =
+ + + =
+ + + =
+ + + =

(35)

where εi = [εi1 εi2 εi3 εi4]′  is the vector containing the errors
due to fitting a reduced regression model for the additive
genetic effects. Thus, e ei i i

* = + ε . In other words, the error
of the full fit model (ei) plus the error due to the regression
model (εi) compound a new error e i

*. Figure 1 depicts the
difference between fitting a full-fit and a reduced-fit random
regression model, and the graphical meaning of εi.

The expected value of the model is still the same (Xi b), but
the dispersion matrices are now:

Var Var  and Var[ ] , [ ] [ ]* * *λ i i i i i= = = ′ +Λ Λ0 0 0 0e R y Q Q R
(36)

Longitudinal Data and Covariance
Functions (CF)

Covariance functions are another approach for dealing
with longitudinal data. Meyer (1998) points out the simi-
larity between covariance functions and the use of an RR
model. A covariance function U(x1,x2) is a function that
describes the covariance between the measures of a ran-
domly chosen individual at x1 and the same individual at
x2 (Kirkpatrick and Heckman 1989, Kirkpatrick et al.
1990, Meyer and Hill 1997). Covariance functions were
designed to deal with characters where the genetic effects
can be expressed as a function dependent on continuous
scales (for example, xi is time or distance), like longitudi-
nal data, morphological shape, and norms of reaction
(Kirkpatrick and Heckman 1989). Thus, they are the con-
tinuous (“infinite-dimensional”) equivalent to covariance
matrices.

Figure 1.  Fitting four measurements using the Full-fit Random
Regression model (RRf) from Equation (32) ( ) and the Reduced-
fit Random Regression model (RRr) from Equation (34) (....). The
error in estimating the additive genetic value for measurement 3,
due to fitting a reduced model, is represented by εi3.
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Kirkpatrick et al. (1990) presented a methodology using
orthogonal polynomials to estimate covariance functions
from a covariance matrix, later extended by Kirkpatrick et al.
(1994). Essentially, the method has two steps. In the first step,
a US model is used to estimate a covariance matrix. In the
second step, the covariance function is truncated to the
number of dimensions (or a reduced order) represented in the
covariance matrix used to fit the function. If Φ is a matrix of
orthogonal polynomials (Legendre polynomials in
Kirkpatrick’s work) with columns φ, G0 is a covariance
matrix (e.g., additive genetic), and U0 is the covariance
matrix of the polynomial coefficients then:

  

Φi

n

n

m m nm
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φ φ φ
φ φ φ

φ φ φ
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0 1

L

L

M M O M
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(37)

Û(x1,x2) = Σi Σj Û0ij φi(x1)φj(x2) (38)

where Û0 = Φ–1G0Φ′-1 for full fit, and it is estimated using
generalized least squares when using reduced fit (see
Kirkpatrick et al. 1990 for details). Full fit and reduced fit
have the same meaning as in random regressions. Note that
Qi [Equation (26)] and Φ [Equation (37)] are equivalent if the
same function is used to model the change of breeding values
with time.

The estimation of covariance functions using Kirkpatrick’s
method relies on a previously estimated covariance matrix.
Therefore it requires all individuals measured on a limited
number of fixed ages, while a general specification of RR [as
in Equation (23)] allows data spread over the trajectory
without assumptions or restrictions for ages (van der Werf
and Schaeffer 1997). Covariance functions permit interpola-
tion and extrapolation of covariances in the same way as the
RR model.

Considering the definition of covariance function [Equa-
tion (38) using Û0 = Φ–1G0Φ′–1], the RR model generates
one of form QiΛ0Qi′. Nevertheless, the procedures are not
identical. Although in RR fitting of a random effect depends
on the fit of the other random effects [Equation (5) is solved
for all variance components simultaneously], Kirkpatrick’s
method does not take into account other random effects (it
considers only G0 and residuals are not “moved” into R0 to
form R0

*). Other models partially provide the functionality of
a covariance function. For example, the AR model (espe-
cially using a power formulation) can be used to span a
correlation structure at any combination of times, but not to
estimate the variances at each age, having then a more limited
application.

Model Selection

A common approach to model selection is based on the
likelihood ratio test (LRT), which asymptotically (i.e., with
an “unspecified suitably large” number of observations),
follows a chi-square distribution (Jones 1993). Two nested

models (one model is a reduced version of the other), one with
p independently adjusted parameters [rank(X) + number of
covariance components] with log-likelihood Log Lp and the
other with p + q parameters with log-likelihood Log Lp + q, are
compared using:

LRT Log L Log Lp q p q =  (  -  ) ~  +2 2χ (39)

The null hypothesis is that both models are the same (extra
parameters do not improve the fit). Including more param-
eters in the model always increases or at least keeps the
likelihood value; thus this test does not favor parsimonious
models. There are several tests that take into account the
number of parameters included in the model (see Jones 1993
for examples). One such test is Akaike’s Information Crite-
rion (AIC, Akaike 1974, Wada and Kashiwagi 1990), which
is:

AIC LogL p =  –   +   2 2 (40)

where LogL is the log-likelihood and p the number of inde-
pendently fitted parameters included in the model. The best
model has the lowest value of AIC. If all models under
comparison include the same fixed effects there is no need to
consider rank (X) in p, because it will not affect the differ-
ences on AIC.

Often the log-likelihood reported by statistical packages
does not include the constant term [con in Equation (5)]
because LogL ∝  LogL without con. Nevertheless, when
comparing nonnested models (models with different distri-
butional assumptions) the log-likelihood must use the com-
plete density function, including all constants not involving
the covariance parameters (Lindsey and Jones 1998).

Numerical Example

The use of different models is illustrated with basic wood
density data (in kg/m3) from breast-height increment cores of
radiata pine (Pinus radiata D. Don) sampled from 28-yr-old
open-pollinated families of the “268” series growing in
Kaingaroa Forest, New Zealand (Shelbourne and Low 1980).
The data set consists of 50 open-pollinated families with 5
blocks and 1 or 2 samples per block, i.e., families with 9 or 10
individuals totaling 424 trees. Each core contains between 20
and 28 measures of diameter at successive rings from the pith.
Weighted basic density at age j (wbdj) is calculated as:

wbd

bd

j

i i

i

j

i

i

j= =

=

∑

∑

∆

∆

1

1

(41)

where bdi is the average basic density of ring i, and ∆i is the
area of ring i. Only weighted basic densities at ages 5, 10, 15,
and 20 are considered in this example.

The general model utilized in the analyses is from
Equations (6) to (8), where means per age are the only
fixed effects. While some of the structures might not be
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biologically plausible for a weighted density dataset (e.g.,
RE over a large number of years), we consider it appropri-
ate to illustrate the effects of such models on the estima-
tion of genetic parameters, and we include them in the
analyses. All models are fitted using ASReml (Gilmour et
al. 1998). Preliminary analyses considered blocks as ran-
dom effects, but these were not significant and therefore
excluded from subsequent models.

The log-likelihood ranged from –6715.02 for the UC
model to –4886.90 for the US model, while AIC ranged
from 9808.54 for the RR model to 13446.64 for the UC
model (see Table 1). The AR and BC models have almost
identical fitting but, considering AIC, the use of less
parameters than in the US model reduced log-likelihood
(Table 1). The RRr model was considered the most appro-
priate since it gave both the lowest AIC and estimates of
genetic parameters closer to those of the US model (Table
2, Figure 2).

The scale effect is small, with phenotypic standard devia-
tion ranging between 26.9 kg/m3 (age 10) to 29.1 kg/m3 (age
20). The data did not require transformation, as most models
(except for RE) directly account for any heterogeneity of
variances.

Heritabilities for age j ( hj
2) and genetic correlations be-

tween ages j and k (rjk) were estimated with the following
formulas, using corresponding elements from Ĝ0  and R̂0:

ˆ
ˆ

ˆ ˆ
hj
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a e

j

j j

2

2

2 2
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σ σ
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ˆ
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j k
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Table 2 presents genetic parameters estimates from the
different models. As expected, the US and RRf (fitting a
third-order orthogonal polynomial for each tree) models
produce identical estimates of genetic parameters. The RRr
model, which fits a second-order orthogonal polynomial for
each tree, has a very similar fit with only six parameters in the
G0 matrix.

In general, heritability estimates do not differ substan-
tially among the models; however, the estimates for ages 5
and 20 are depressed in the AR and BC models, respectively
(Table 2). This seems to be caused by the large reduction of
the number of correlations estimated (especially with the AR
model).

The results for the US and RRf additive genetic correlation
structures are identical (Figure 2). The correlations between
density at age 5 and later measurements are smaller than the
correlations between successive measurements.

C CUS RRf= =





















1 0 941 0 881 0 846

0 941 1 0 987 0 968

0 881 0 987 1 0 993

0 846 0 968 0 993 1

. . .

. . .

. . .

. . .

The BC model constrains correlations with the same lag to
be identical, estimating three correlations instead of six.
Thence {0.941, 0.987, 0.993}→0.988, {0.881, 0.968}→0.958
and {0.846}→0.917 from the CUS (Figure 2). The banded BC
model was not well suited to represent the correlations of age
5 with later measurements, overestimating the first column
by values ranging from 0.047 to 0.077.

CBC =





















1 0 988 0 958 0 917

0 988 1 0 988 0 958

0 958 0 988 1 0 988

0 917 0 958 0 988 1

. . .

. . .

. . .

. . .

Table 1.  Log-likelihood (LogL) and Akaike’s information criterion
(AIC) for the Unstructured (US), Full-fit Random Regressions
(RRf), Banded Correlations (BC), Autoregressive (AR), Repeat-
ability (RE), Uncorrelated (UC), and Reduced-fit Random Regres-
sions (RRr) models.

Model
Parameters

(G0 + R0 = p)
Log-likelihood

(LogL)
AIC

(–2 LogL + 2 p)
US and RRf 10 + 10 –4,886.90 9,813.80

BC 7 + 10 –4,891.03 9,816.06
AR 5 + 10 –4,892.71 9,815.42
RE 1 + 2 –6,327.04 12,660.08
UC 4 + 4 –6,715.32 13,446.64
RRr 6 + 10 –4,888.27 9,808.54

Table 2.  Genetic parameters estimated from Unstructured (US),
Full-fit Random Regressions (RRf), Banded Correlations (BC),
Autoregressive (AR), Repeatability (RE), Uncorrelated (UC), and
Reduced-fit Random Regressions (RRr) models. Heritability (h2)
and phenotypic variance ( σ p

2
) and residual correlations (re,

below diagonal).

a Heritability and phenotypic variance values apply across ages.

Age (yr)

Age (yr) h2 σ p
2 5 10 15

US and RRf
5 0.731 792.411

10 0.818 724.238 0.764
15 0.805 782.797 0.537 0.837
20 0.840 847.901 0.278 0.578 0.879

BC
5 0.747 799.150

10 0.823 725.560 0.595
15 0.759 776.628 0.337 0.860
20 0.771 837.059 0.118 0.677 0.918

AR
5 0.678 792.432

10 0.815 723.823 0.673
15 0.786 780.333 0.330 0.821
20 0.800 843.707 0.026 0.539 0.884

REa

5 0.567 1,052.468
10 0.567 1,052.468 0.180
15 0.567 1,052.468 0.180 0.180
20 0.567 1,052.468 0.180 0.180 0.180

UC
5 0.730 799.873

10 0.818 726.869 0
15 0.802 783.924 0 0
20 0.815 847.186 0 0 0

RRr
5 0.743 795.181

10 0.802 721.986 0.713
15 0.818 784.827 0.492 0.848
20 0.842 848.130 0.210 0.607 0.869
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Figure 2.  Contour plots of the correlation structures from the numerical example: US: unstructured, RRf: random
regressions full fit (third degree polynomial), BC: banded correlations, AR: autoregressive, RRr: random regressions
reduced fit (second degree polynomial), and CF: covariance function (second degree polynomial). Contour lines are
labeled every 0.02 for all models except for the AR model, which is labeled every 0.005.
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The AR model further reduces the number of parameters
to be estimated. To achieve convergence it was necessary to
use time in a natural logarithm scale, to accommodate onto-
genetic effects. Thus the autocorrelation coefficient is ex-

pressed as 0 988.
log log(age ) (age )k j− . Again the assumptions of

the model are too restrictive, because a unique autoregression
coefficient can not represent the lower correlation of the first
measure with later ones. As a result all correlations are
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overestimated. The spacing of the contour lines in Figure 2
was accordingly decreased from 0.020 to 0.005 for this model
to improve presentation of results. The poor performance of
the AR correlation matrix contrast with the results for tree
height (m) obtained by Apiolaza et al. (2000) where it was
selected as the best model.

CAR =





















1 0 992 0 987 0 983

0 992 1 0 995 0 992

0 987 0 995 1 0 997

0 983 0 992 0 997 1

. . .

. . .

. . .

. . .

By definition the additive correlations are restricted to
CRE = J [Equation (17)] and CUC = I [Equation (17)] for the
RE and UC models, respectively. The RRr model (reduction
from full-fit order 3 to order 2) appears to be less restrictive
than the BC, AR, RE, and UC models and closely follows the
results from the US model (Figure 2). This result also departs
from the poor representation of genetic parameters for tree
height reported by Apiolaza et al. (2000) for RRr models.

CRRr =





















1 0 955 0 890 0 859

0 955 1 0 984 0 965

0 890 0 984 1 0 994

0 859 0 965 0 994 1

. . .

. . .

. . .

. . .

Residual correlation matrices of the US and RRr models
were similar, as were the residual matrices of BC and AR
(Table 2). Constraints in the UC and RE models rendered
their residual correlation matrices distinct.

Results from covariance structures and covariance func-
tions are not directly comparable, and we only present the
additive genetic correlation matrix from the former approach.
A covariance function, based on Legendre polynomials, is
fitted to the G0 matrix from the US structure using a
Mathematica notebook (Kirkpatrick et al. 1990).

CCF =





















1 0 957 0 893 0 862

0 957 1 0 984 0 965

0 893 0 984 1 0 994

0 862 0 965 0 994 1

. . .

. . .

. . .

. . .

The results from the CF model are very similar to those
from the US and RRf models, but require an estimate of the
US structure as starting values. Again, fitting a second degree
polynomial (i.e., six parameters for G0) appears to be an
appropriate approximation to the results from the US model.

Final Remarks

The UC model has been applied in forestry, albeit implic-
itly, for studying changes of heritability with time. Covari-
ances have typically been estimated by univariate analysis of
the sums of pairs of measures, using the result Cov(x,y) =
[Cov(x + y) – Var(x) – Var(y)]/2, but this does not allow

unbiased use of data with missing observations such as occur
from thinnings or mortality. The use of full multivariate
evaluation takes into account the existence of selection or
patterns of missing information; thus it provides unbiased
minimum variance estimates of breeding values.

Breeders must be aware of large differences in the degree
of parsimony, i.e., economy on the number of parameters to
be estimated, and number and type of assumptions, involved
in the different models presented. Hence, model selection
should also consider biological plausibility of these assump-
tions. When there are only a few measurements, the US
model (with no restricting assumption about the biological
model) provides a good fit, but when increasing the number
of measurements the probability of obtaining non-positive
definite results increases. Using bending to obtain a positive
definite matrix from the US model decreases the log-likeli-
hood value, which may be lower than the ones coming from
structured models (e.g., Apiolaza et al. 2000). The numerical
example illustrates that it is necessary to find a compromise
where the gains of using structures outweigh any bias due to
model dependency. For example, the AR structure model
involves the estimation of five parameters less than the US
model, and reduces log-likelihood by only 5.8 units (for an
AIC difference of 1.6) while providing a poor fit. On the other
hand, the RR model requires four parameters less than the US
model, reduces log-likelihood 1.4 units (with an AIC smaller
by 5.3 units), and provides an almost perfect fit.

Different covariance structures have been compared in
sheep breeding (Coelli et al. 1998 using US, BC, AR, and RE
for fleece weight and fiber diameter) and tree breeding
(Apiolaza et al. 2000 using US, BC, AR, RR, and UC for total
height). These papers show that different traits need different
models. Applications of RR are now popular in animal
breeding, either using orthogonal polynomials (Meyer 1998,
van der Werf et al. 1998), growth models (Jamrozik et al.
1997) or cubic splines (White et al. 1999). As pointed out by
van der Werf et al. (1998), random regressions are an appeal-
ing approach, but in practice, covariance matrices estimated
using the method can deviate significantly from those esti-
mated using univariate or bivariate analyses. This behavior
seems associated with strong reductions on the number of
components (i.e., order of the polynomial compared to num-
ber of measures).

The fact that two models have similar AIC does not mean
that their covariance matrices have similar “shape” (see
Figure 2 and Apiolaza et al. 2000, as examples). Thus, while
the objective is to reduce the number of parameters to be
estimated, simultaneously the shape of the covariance matri-
ces must be kept. Shaw (1991) suggests using maximum
likelihood approach for the comparison of genetic covariance
matrices, while Goodnight and Schwartz (1997) propose a
bootstrap method.

Fitting multivariate models is certainly more complex and
computationally demanding than using either a univariate
approach (UC) or a series of bivariate analyses. On the other
hand, it provides a description of the changes of genetic
parameters with time. This article and Apiolaza et al. (2000)
present both theory and examples for further optimization of
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the breeding programs, considering number and timing of
measurements of progeny tests, early selection, and an over-
all better understanding of the genetic control of traits subject
to selection. Finally, it is necessary to point out that models
of longitudinal data should consider any other effects present
in the experiment (e.g., block, plots, etc.) in case they are
relevant to the estimation of covariance components.
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APPENDIX 1.  Direct Sum and Direct Product

The direct sum of n matrices Ai is defined as:

  

Σ⊕ =





















=

A 0 0

0 A 0

0 0 A

A

1

2

L

L

M M O M

L n

idiag{ }
(A1)

Therefore, a direct sum of matrices creates a block diago-
nal matrix with the matrices being added in the diagonal and
all off-diagonal elements equal to 0. Submatrices may be of
different orders.

Example:

1 2

3 4

5 6

7 8

1 2 0 0

3 4 0 0

0 0 5 6

0 0 7 8
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The direct product of two matrices Apxq and Bmxn creates
a matrix where each submatrix is B multiplied by an element
of A:

  

A B

B B

B B
pxq mxn

q

p pq

a a

a a

⊗ =

















11 1

1

L

M O M

L
(A2)

where aij is the element of A from row i and column j.

Example:

1 2 3
4 5

6 7

4 5 8 10 12 15

6 7 12 14 18 21
[ ] ⊗
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