I have been very busy with the start of the semester, teaching regression modelling. The craziest thing was that the R installation was broken in the three computer labs I was allocated to use. It would not have been surprising if I were talking about Python ( 🤣 ), but the installation script had a major bug. Argh!
Anyhow, I was talking with a student who was asking me why we were using R in the course (she already knew how to use Python). If you work in research for a while, particularly in statistics/data analysis, you are bound to bump onto long-lived discussions. It isn’t the Text Editor Wars nor the Operating Systems wars. I am referring to two questions that come up all the time in long threads:
- What language should I learn or use for my analyses?
- Should I be a Bayesian or a Frequentist? You are supposed to choose a statistical church.
The easy answer for the first one is “because I say so”: it’s my course. A longer answer is that a Domain Specific Language makes life a lot easier, as it is optimised to tasks performed in that domain. An even longer answer points to something deeper: a single language is never enough. My head plays images of Minitab, SAS, Genstat, Splus, R, ASReml, etc that I had to use at some point just to deal with statistics. Or Basic, Fortran, APL (crazy, I know), Python, Matlab, C++, etc that I had to use as more general languages at some point. The choice of language will depend on the problem and the community/colleagues you end up working with. Along your career you become a polyglot.
As an agnostic (in my good days) or an atheist (in my bad ones) I am not prone to join churches. In my research, I tend to use mostly frequentist stats (of the REML persuasion) but, sometimes, Bayesian approaches feel like the right framework. In most of my problems both schools tend to give the same, if not identical results.
I have chosen to be an interfaith polyglot.