Forestry is the province of variability. From a spatial point of view this variability ranges from within-tree variation (e.g. modeling wood properties) to billions of trees growing in millions of hectares (e.g. forest inventory). From a temporal point of view we can deal with daily variation in a physiological model to many decades in an empirical growth and yield model. Therefore, it is not surprising that there is a rich tradition of statistical applications to forestry problems.
At the same time, the scope of statistical problems is very diverse. As the saying goes forestry deals with “an ocean of knowledge, but only one centimeter deep”, which is perhaps an elegant way of saying a jack of all trades, master of none. Forest Analytics with R: an introduction by Andrew Robinson and Jeff Hamann (FAWR hereafter) attempts to provide a consistent overview of typical statistical techniques in forestry as they are implemented using the R statistical system.