Evolving notes, images and sounds by Luis Apiolaza

Category: asreml(Page 2 of 4)

Disappeared for a while collecting frequent flyer points. In the process I ‘discovered’ that I live in the middle of nowhere, as it took me 36 hours to reach my conference destination (Estoril, Portugal) through Christchurch, Sydney, Bangkok, Dubai, Madrid and Lisbon.

Where was I? Showing how split-plots look like under the bonnet (hood for you US readers). Yates presented a nice diagram of his oats data set in the paper, so we have the spatial location of each data point which permits us playing with within-trial spatial trends.

I like statistics and I struggle with statistics. Often times I get frustrated when I don’t understand and I really struggled to make sense of Krushke’s Bayesian analysis of a split-plot, particularly because ‘it didn’t look like’ a split-plot to me.

Additionally, I have made a few posts discussing linear mixed models using several different packages to fit them. At no point I have shown what are the calculations behind the scenes. So, I decided to combine my frustration and an explanation to myself in a couple of posts. This is number one and the follow up is Split-plot 2: let’s throw in some spatial effects.

A while ago I wanted to run a quantitative genetic analysis where the performance of genotypes in each site was considered as a different trait. If you think about it, with 70 sites and thousands of genotypes one is trying to fit a 70×70 additive genetic covariance matrix, which requires 70*69/2 = 2,415 covariance components. Besides requiring huge amounts of memory and being subject to all sort of estimation problems there were all sort of connectedness issues that precluded the use of Factor Analytic models to model the covariance matrix. The best next thing was to run over 2,000 bivariate analyses to build a large genetic correlation matrix (which has all sort of issues, I know). This meant leaving the computer running for over a week.
Anyhow, as I have pointed out in repeated occasions, I prefer asreml-R for mixed model analyses because I run out of functionality with nlme and lme4 very quickly. Ten-trait multivariate mixed model with a pedigree, anyone? I thought so. Well, there are asreml-R versions for Windows, Linux and OS X; unsurprisingly, I use the latter. Installation in OS X is not particularly complicated (just follow the instructions in this PDF file) and remember to add and export the following environment variables in your .bash_profile: